1
|
Calin GA, Hubé F, Ladomery MR, Delihas N, Ferracin M, Poliseno L, Agnelli L, Alahari SK, Yu AM, Zhong XB. The 2024 Nobel Prize in Physiology or Medicine: microRNA Takes Center Stage. Noncoding RNA 2024; 10:62. [PMID: 39728607 DOI: 10.3390/ncrna10060062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024] Open
Abstract
The Non-coding Journal Editorial Board Members would like to congratulate Victor Ambros and Gary Ruvkun, who were jointly awarded the 2024 Nobel Prize in Physiology or Medicine for their groundbreaking discovery of microRNAs and the role of microRNAs in post-transcriptional gene regulation, uncovering a previously unknown layer of gene control in eukaryotes [...].
Collapse
Affiliation(s)
- George A Calin
- Department of Translational Molecular Pathology, Center for RNA Interference and Non-Coding RNAs, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Florent Hubé
- Laboratoire Biologie du Développement, Institut de Biologie Paris-Seine, Transgenerational Epigenetics & Small RNA Biology, Sorbonne Université, CNRS, UMR7622, 75005 Paris, France
| | - Michael R Ladomery
- School of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK
| | - Nicholas Delihas
- Department of Microbiology and Immunology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Manuela Ferracin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via S. Giacomo, 14, 40126 Bologna, Italy
| | - Laura Poliseno
- National Research Council (CNR) and Oncogenomics Unit, Core Research Laboratory (CRL), Institute of Clinical Physiology (IFC), Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), via Moruzzi 1, 56124 Pisa, Italy
| | - Luca Agnelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
- Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU School of Medicine, New Orleans, LA 70112, USA
| | - Ai-Ming Yu
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
2
|
Li T, Zhen H, Wu W, Yang F, Cao Z. tsRNAs: A Prospective, Effective Therapeutic Intervention for Neurodegenerative Diseases. CNS Neurosci Ther 2024; 30:e70177. [PMID: 39690867 DOI: 10.1111/cns.70177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Neurological disorders known as neurodegenerative diseases (NDDs) result in the slow loss of neurons in the central nervous system (CNS) or peripheral nervous system (PNS), as well as the collapse of neural networks in terms of structure and function. NDDs are expected to surpass cancer as the second biggest cause of mortality by 2040, according to World Health Organization (WHO) estimations. Neurons cannot effectively regenerate themselves because they are terminally differentiated. Accordingly, it is challenging to find medications that could stop or slow neurodegeneration. MAIN BODY The tsRNAs are a type of small non-coding RNAs derived from mature tRNAs or tRNA precursors. tsRNAs control gene expression and have a role in many physiological and pathological processes, including neurological illnesses. Antisense oligonucleotides are effective therapeutic agents for neurological diseases, and they may be the treatment of choice for neurodegenerative diseases in the future. Here, we review the biogenesis of tsRNA, its physiological and pathological functions in the central nervous system and neurological disorders, and its prospective use as a nucleic acid medication to treat NDDs, providing theoretical support and guidance for further exploration of tsRNAs in therapeutic intervention. CONCLUSION tsRNAs are emerging as important regulatory molecules in neurodegenerative diseases. Understanding the functions of tsRNAs in neurodegenerative diseases may provide new insights into disease mechanisms and lead to the development of novel treatment strategies.
Collapse
Affiliation(s)
- Tianqi Li
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Hui Zhen
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Weiwei Wu
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Fengtang Yang
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| | - Zhonghong Cao
- School of Life Science and Medicine, Shandong University of Technology, Zibo, Shandong, China
| |
Collapse
|
3
|
Yared MJ, Chagneau C, Barraud P. Imino chemical shift assignments of tRNA Asp, tRNA Val and tRNA Phe from Escherichia coli. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:323-331. [PMID: 39365419 PMCID: PMC11511762 DOI: 10.1007/s12104-024-10207-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/22/2024] [Indexed: 10/05/2024]
Abstract
Transfer RNAs (tRNAs) are an essential component of the protein synthesis machinery. In order to accomplish their cellular functions, tRNAs go through a highly controlled biogenesis process leading to the production of correctly folded tRNAs. tRNAs in solution adopt the characteristic L-shape form, a stable tertiary conformation imperative for the cellular stability of tRNAs, their thermotolerance, their interaction with protein and RNA complexes and their activity in the translation process. The introduction of post-transcriptional modifications by modification enzymes, the global conformation of tRNAs, and their cellular stability are highly interconnected. We aim to further investigate this existing link by monitoring the maturation of bacterial tRNAs in E. coli extracts using NMR. Here, we report on the 1H, 15N chemical shift assignment of the imino groups and some amino groups of unmodified and modified E. coli tRNAAsp, tRNAVal and tRNAPhe, which are essential for characterizing their maturation process using NMR spectroscopy.
Collapse
Affiliation(s)
- Marcel-Joseph Yared
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Carine Chagneau
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France
| | - Pierre Barraud
- Expression génétique microbienne, Université Paris Cité, CNRS, Institut de biologie physico-chimique, IBPC, 13 rue Pierre et Marie Curie, Paris, 75005, France.
| |
Collapse
|
4
|
Ceriotti LF, Warren JM, Sanchez-Puerta MV, Sloan DB. The landscape of Arabidopsis tRNA aminoacylation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2784-2802. [PMID: 39555621 DOI: 10.1111/tpj.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
The function of transfer RNAs (tRNAs) depends on enzymes that cleave primary transcript ends, add a 3' CCA tail, introduce post-transcriptional base modifications, and charge (aminoacylate) mature tRNAs with the correct amino acid. Maintaining an available pool of the resulting aminoacylated tRNAs is essential for protein synthesis. High-throughput sequencing techniques have recently been developed to provide a comprehensive view of aminoacylation state in a tRNA-specific fashion. However, these methods have never been applied to plants. Here, we treated Arabidopsis thaliana RNA samples with periodate and then performed tRNA-seq to distinguish between aminoacylated and uncharged tRNAs. This approach successfully captured every tRNA isodecoder family and detected expression of additional tRNA-like transcripts. We found that estimated aminoacylation rates and CCA tail integrity were significantly higher on average for organellar (mitochondrial and plastid) tRNAs than for nuclear/cytosolic tRNAs. Reanalysis of previously published human cell line data showed a similar pattern. Base modifications result in nucleotide misincorporations and truncations during reverse transcription, which we quantified and used to test for relationships with aminoacylation levels. We also determined that the Arabidopsis tRNA-like sequences (t-elements) that are cleaved from the ends of some mitochondrial messenger RNAs have post-transcriptionally modified bases and CCA-tail addition. However, these t-elements are not aminoacylated, indicating that they are only recognized by a subset of tRNA-interacting enzymes and do not play a role in translation. Overall, this work provides a characterization of the baseline landscape of plant tRNA aminoacylation rates and demonstrates an approach for investigating environmental and genetic perturbations to plant translation machinery.
Collapse
Affiliation(s)
- Luis F Ceriotti
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Jessica M Warren
- Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - M Virginia Sanchez-Puerta
- IBAM, Universidad Nacional de Cuyo, CONICET, Facultad de Ciencias Agrarias, Mendoza, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
5
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Bobbo T, Biscarini F, Yaddehige SK, Alberghini L, Rigoni D, Bianchi N, Taccioli C. Machine learning classification of archaea and bacteria identifies novel predictive genomic features. BMC Genomics 2024; 25:955. [PMID: 39402493 PMCID: PMC11472548 DOI: 10.1186/s12864-024-10832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Archaea and Bacteria are distinct domains of life that are adapted to a variety of ecological niches. Several genome-based methods have been developed for their accurate classification, yet many aspects of the specific genomic features that determine these differences are not fully understood. In this study, we used publicly available whole-genome sequences from bacteria ( N = 2546 ) and archaea ( N = 109 ). From these, a set of genomic features (nucleotide frequencies and proportions, coding sequences (CDS), non-coding, ribosomal and transfer RNA genes (ncRNA, rRNA, tRNA), Chargaff's, topological entropy and Shannon's entropy scores) was extracted and used as input data to develop machine learning models for the classification of archaea and bacteria. RESULTS The classification accuracy ranged from 0.993 (Random Forest) to 0.998 (Neural Networks). Over the four models, only 11 examples were misclassified, especially those belonging to the minority class (Archaea). From variable importance, tRNA topological and Shannon's entropy, nucleotide frequencies in tRNA, rRNA and ncRNA, CDS, tRNA and rRNA Chargaff's scores have emerged as the top discriminating factors. In particular, tRNA entropy (both topological and Shannon's) was the most important genomic feature for classification, pointing at the complex interactions between the genetic code, tRNAs and the translational machinery. CONCLUSIONS tRNA, rRNA and ncRNA genes emerged as the key genomic elements that underpin the classification of archaea and bacteria. In particular, higher nucleotide diversity was found in tRNA from bacteria compared to archaea. The analysis of the few classification errors reflects the complex phylogenetic relationships between bacteria, archaea and eukaryotes.
Collapse
Affiliation(s)
- Tania Bobbo
- Institute for Biomedical Technologies, National Research Council (CNR), Via Fratelli Cervi 93, Segrate (MI), 20054, Italy
| | - Filippo Biscarini
- Institute of Agricultural Biology and Biotechnology, National Research Council (CNR), Via Edoardo Bassini 15, Milano, 20133, Italy.
| | - Sachithra K Yaddehige
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Leonardo Alberghini
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy
| | - Davide Rigoni
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Francesco Marzolo 5, Padova, 35131, Italy
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, Ferrara, 44121, Italy.
| | - Cristian Taccioli
- Department of Animal Medicine, Health and Production, University of Padova, Viale dell'Universitá 16, Legnaro, 35020, Italy.
| |
Collapse
|
7
|
Madhry D, Kumari K, Meena V, Roy R, Verma B. Unravelling tRNA fragments in DENV pathogenesis: Insights from RNA sequencing. Sci Rep 2024; 14:18357. [PMID: 39112524 PMCID: PMC11306563 DOI: 10.1038/s41598-024-69391-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Small non-coding RNAs (sncRNAs) derived from tRNAs are known as tRNA-derived small RNAs (tsRNAs). These tsRNAs are further categorized into tRNA-derived fragments (tRFs) and tRNA halves (tiRNAs), which play significant roles in the various molecular mechanisms underlying certain human diseases. However, the generation of tsRNAs and their potential roles during Dengue virus (DENV) infection is not yet known. Here, we performed small RNA sequencing to identify the generation and alterations in tsRNAs expression profiles of DENV-infected Huh7 cells. Upon DENV infection, tRNA fragmentation was found to be increased. We identified a significant number of differentially expressed tsRNAs during DENV infection. Interestingly, the 3'tRF population showed upregulation, while the i-tRF population exhibited downregulation. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was performed to analyze the impact of differentially expressed tsRNAs on DENV pathogenesis. Our results suggest that differentially expressed tsRNAs are involved in transcriptional regulation via RNA polymerase II promoter and metabolic pathways. Overall, our study contributes significantly to our understanding of the roles played by tsRNAs in the complex dynamics of DENV infection.
Collapse
Affiliation(s)
- Deeksha Madhry
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Kiran Kumari
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Varsha Meena
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Riya Roy
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Bhupendra Verma
- Department of Biotechnology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
8
|
Schultz SK, Kothe U. RNA modifying enzymes shape tRNA biogenesis and function. J Biol Chem 2024; 300:107488. [PMID: 38908752 PMCID: PMC11301382 DOI: 10.1016/j.jbc.2024.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
Collapse
Affiliation(s)
- Sarah K Schultz
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| | - Ute Kothe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada; Alberta RNA Research and Training Institute (ARRTI), Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada.
| |
Collapse
|
9
|
Umuhire Juru A, Ghirlando R, Zhang J. Structural basis of tRNA recognition by the widespread OB fold. Nat Commun 2024; 15:6385. [PMID: 39075051 PMCID: PMC11286949 DOI: 10.1038/s41467-024-50730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/18/2024] [Indexed: 07/31/2024] Open
Abstract
The widespread oligonucleotide/oligosaccharide-binding (OB)-fold recognizes diverse substrates from sugars to nucleic acids and proteins, and plays key roles in genome maintenance, transcription, translation, and tRNA metabolism. OB-containing bacterial Trbp and yeast Arc1p proteins are thought to recognize the tRNA elbow or anticodon regions. Here we report a 2.6 Å co-crystal structure of Aquifex aeolicus Trbp111 bound to tRNAIle, which reveals that Trbp recognizes tRNAs solely by capturing their 3' ends. Structural, mutational, and biophysical analyses show that the Trbp/EMAPII-like OB fold precisely recognizes the single-stranded structure, 3' terminal location, and specific sequence of the 3' CA dinucleotide - a universal feature of mature tRNAs. Arc1p supplements its OB - tRNA 3' end interaction with additional contacts that involve an adjacent basic region and the tRNA body. This study uncovers a previously unrecognized mode of tRNA recognition by an ancient protein fold, and provides insights into protein-mediated tRNA aminoacylation, folding, localization, trafficking, and piracy.
Collapse
Affiliation(s)
- Aline Umuhire Juru
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
10
|
Binder AK, Bremm F, Dörrie J, Schaft N. Non-Coding RNA in Tumor Cells and Tumor-Associated Myeloid Cells-Function and Therapeutic Potential. Int J Mol Sci 2024; 25:7275. [PMID: 39000381 PMCID: PMC11242727 DOI: 10.3390/ijms25137275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The RNA world is wide, and besides mRNA, there is a variety of other RNA types, such as non-coding (nc)RNAs, which harbor various intracellular regulatory functions. This review focuses on small interfering (si)RNA and micro (mi)RNA, which form a complex network regulating mRNA translation and, consequently, gene expression. In fact, these RNAs are critically involved in the function and phenotype of all cells in the human body, including malignant cells. In cancer, the two main targets for therapy are dysregulated cancer cells and dysfunctional immune cells. To exploit the potential of mi- or siRNA therapeutics in cancer therapy, a profound understanding of the regulatory mechanisms of RNAs and following targeted intervention is needed to re-program cancer cells and immune cell functions in vivo. The first part focuses on the function of less well-known RNAs, including siRNA and miRNA, and presents RNA-based technologies. In the second part, the therapeutic potential of these technologies in treating cancer is discussed, with particular attention on manipulating tumor-associated immune cells, especially tumor-associated myeloid cells.
Collapse
Affiliation(s)
- Amanda Katharina Binder
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Franziska Bremm
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany; (A.K.B.); (F.B.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany
- Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
11
|
Cesaroni CA, Contrò G, Spagnoli C, Cancelliere F, Caraffi SG, Leon A, Stefanini C, Frattini D, Rizzi S, Cavalli A, Garavelli L, Fusco C. Early-onset dysphagia and severe neurodevelopmental disorder as early signs in a patient with two novel variants in NARS1: a case report and brief review of the literature. Neurogenetics 2024; 25:287-291. [PMID: 38652341 DOI: 10.1007/s10048-024-00760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Aminoacyl-tRNA synthetases (ARSs) aminoacylate tRNA molecules with their cognate amino acid, enabling information transmission and providing substrates for protein biosynthesis. They also take part in nontranslational functions, mediated by the presence of other proteins domains. Mutations in ARS genes have been described as responsive to numerous factors, including neurological, autoimmune, and oncological. Variants of the ARS genes, both in heterozygosity and homozygosity, have been reported to be responsible for different pathological pictures in humankind. We present the case of a patient referred in infancy for failure to thrive and acquired microcephaly (head circumference: -5 SD). During follow-up we highlighted: dysphagia (which became increasingly severe until it became incompatible with oral feeding, with gastrostomy implantation, resulting in resolution of feeding difficulties), strabismus, hypotonia. NCV (Nerve Conduction Velocity) showed four limbs neuropathy, neurophysiological examination performed at 2 years of age mainly sensory and demyelinating. Exome sequencing (ES) was performed, detecting two novel compound heterozygous variants in the NARS1 gene (OMIM *108410): NM_004539:c.[662 A > G]; [1155dup], p.[(Asn221Ser)]; [(Arg386Thrfs*19)], inherited from mother and father respectively. In this article, we would like to focus on the presence of progressive dysphagia and severe neurodevelopmental disorder, associated with two novel variants in the NARS1 gene.
Collapse
Affiliation(s)
- Carlo Alberto Cesaroni
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy.
| | - Gianluca Contrò
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Federica Cancelliere
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Alberta Leon
- R & I Genetics, C.So Stati Uniti 4int.F, 35127, Padua, Italy
| | - Camilla Stefanini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Daniele Frattini
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Susanna Rizzi
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Anna Cavalli
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Pediatric Neurophysiology Laboratory, Mother and Child Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, 42123, Italy
| |
Collapse
|
12
|
Muthukumar S, Li CT, Liu RJ, Bellodi C. Roles and regulation of tRNA-derived small RNAs in animals. Nat Rev Mol Cell Biol 2024; 25:359-378. [PMID: 38182846 DOI: 10.1038/s41580-023-00690-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2023] [Indexed: 01/07/2024]
Abstract
A growing class of small RNAs, known as tRNA-derived RNAs (tdRs), tRNA-derived small RNAs or tRNA-derived fragments, have long been considered mere intermediates of tRNA degradation. These small RNAs have recently been implicated in an evolutionarily conserved repertoire of biological processes. In this Review, we discuss the biogenesis and molecular functions of tdRs in mammals, including tdR-mediated gene regulation in cell metabolism, immune responses, transgenerational inheritance, development and cancer. We also discuss the accumulation of tRNA-derived stress-induced RNAs as a distinct adaptive cellular response to pathophysiological conditions. Furthermore, we highlight new conceptual advances linking RNA modifications with tdR activities and discuss challenges in studying tdR biology in health and disease.
Collapse
Affiliation(s)
- Sowndarya Muthukumar
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden
| | - Cai-Tao Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ru-Juan Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Cristian Bellodi
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund Stem Cell Center, Faculty of Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Zhou M, He X, Zhang J, Mei C, Zhong B, Ou C. tRNA-derived small RNAs in human cancers: roles, mechanisms, and clinical application. Mol Cancer 2024; 23:76. [PMID: 38622694 PMCID: PMC11020452 DOI: 10.1186/s12943-024-01992-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) are a new type of non-coding RNAs (ncRNAs) produced by the specific cleavage of precursor or mature tRNAs. tsRNAs are involved in various basic biological processes such as epigenetic, transcriptional, post-transcriptional, and translation regulation, thereby affecting the occurrence and development of various human diseases, including cancers. Recent studies have shown that tsRNAs play an important role in tumorigenesis by regulating biological behaviors such as malignant proliferation, invasion and metastasis, angiogenesis, immune response, tumor resistance, and tumor metabolism reprogramming. These may be new potential targets for tumor treatment. Furthermore, tsRNAs can exist abundantly and stably in various bodily fluids (e.g., blood, serum, and urine) in the form of free or encapsulated extracellular vesicles, thereby affecting intercellular communication in the tumor microenvironment (TME). Meanwhile, their abnormal expression is closely related to the clinicopathological features of tumor patients, such as tumor staging, lymph node metastasis, and poor prognosis of tumor patients; thus, tsRNAs can be served as a novel type of liquid biopsy biomarker. This review summarizes the discovery, production, and expression of tsRNAs and analyzes their molecular mechanisms in tumor development and potential applications in tumor therapy, which may provide new strategies for early diagnosis and targeted therapy of tumors.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jing Zhang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, Hunan, 410008, China.
| | - Baiyun Zhong
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
14
|
Kuzminov A. Bacterial nucleoid is a riddle wrapped in a mystery inside an enigma. J Bacteriol 2024; 206:e0021123. [PMID: 38358278 PMCID: PMC10994824 DOI: 10.1128/jb.00211-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Bacterial chromosome, the nucleoid, is traditionally modeled as a rosette of DNA mega-loops, organized around proteinaceous central scaffold by nucleoid-associated proteins (NAPs), and mixed with the cytoplasm by transcription and translation. Electron microscopy of fixed cells confirms dispersal of the cloud-like nucleoid within the ribosome-filled cytoplasm. Here, I discuss evidence that the nucleoid in live cells forms DNA phase separate from riboprotein phase, the "riboid." I argue that the nucleoid-riboid interphase, where DNA interacts with NAPs, transcribing RNA polymerases, nascent transcripts, and ssRNA chaperones, forms the transcription zone. An active part of phase separation, transcription zone enforces segregation of the centrally positioned information phase (the nucleoid) from the surrounding action phase (the riboid), where translation happens, protein accumulates, and metabolism occurs. I speculate that HU NAP mostly tiles up the nucleoid periphery-facilitating DNA mobility but also supporting transcription in the interphase. Besides extruding plectonemically supercoiled DNA mega-loops, condensins could compact them into solenoids of uniform rings, while HU could support rigidity and rotation of these DNA rings. The two-phase cytoplasm arrangement allows the bacterial cell to organize the central dogma activities, where (from the cell center to its periphery) DNA replicates and segregates, DNA is transcribed, nascent mRNA is handed over to ribosomes, mRNA is translated into proteins, and finally, the used mRNA is recycled into nucleotides at the inner membrane. The resulting information-action conveyor, with one activity naturally leading to the next one, explains the efficiency of prokaryotic cell design-even though its main intracellular transportation mode is free diffusion.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Phan LMT, Duong Pham TT, Than VT. RNA therapeutics for infectious diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 204:109-132. [PMID: 38458735 DOI: 10.1016/bs.pmbts.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Ribonucleic acids (RNAs), including the messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA), play important roles in living organisms and viruses. In recent years, the RNA-based technologies including the RNAs inhibiting other RNA activities, the RNAs targeting proteins, the RNAs reprograming genetic information, and the RNAs encoding therapeutical proteins, are useful methods to apply in prophylactic and therapeutic vaccines. In this review, we summarize and highlight the current application of the RNA therapeutics, especially on mRNA vaccines which have potential for prevention and treatment against human and animal infectious diseases.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- School of Medicine and Pharmacy, The University of Danang, Danang, Vietnam
| | - Thi Thuy Duong Pham
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| | - Van Thai Than
- Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam; Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam.
| |
Collapse
|
16
|
Lamsal M, Luker HA, Pinch M, Hansen IA. RNAi-Mediated Knockdown of Acidic Ribosomal Stalk Protein P1 Arrests Egg Development in Adult Female Yellow Fever Mosquitoes, Aedes aegypti. INSECTS 2024; 15:84. [PMID: 38392504 PMCID: PMC10889338 DOI: 10.3390/insects15020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/24/2024]
Abstract
After taking a blood meal, the fat body of the adult female yellow fever mosquito, Aedes aegypti, switches from a previtellogenic state of arrest to an active state of synthesizing large quantities of yolk protein precursors (YPPs) that are crucial for egg development. The synthesis of YPPs is regulated at both the transcriptional and translational levels. Previously, we identified the cytoplasmic protein general control nonderepressible 1 (GCN1) as a part of the translational regulatory pathway for YPP synthesis. In the current study, we used the C-terminal end of GCN1 to screen for protein-protein interactions and identified 60S acidic ribosomal protein P1 (P1). An expression analysis and RNAi-mediated knockdown of P1 was performed to further investigate the role of P1 in mosquito reproduction. We showed that in unfed (absence of a blood meal) adult A. aegypti mosquitoes, P1 was expressed ubiquitously in the mosquito organs and tissues tested. We also showed that the RNAi-mediated knockdown of P1 in unfed adult female mosquitoes resulted in a strong, transient knockdown with observable phenotypic changes in ovary length and egg deposition. Our results suggest that 60S acidic ribosomal protein P1 is necessary for mosquito reproduction and is a promising target for mosquito population control.
Collapse
Affiliation(s)
- Mahesh Lamsal
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Hailey A. Luker
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| | - Matthew Pinch
- Department of Biology, University of Texas El Paso, El Paso, TX 79968, USA
| | - Immo A. Hansen
- Molecular Vector Physiology Laboratory, Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA; (M.L.)
| |
Collapse
|
17
|
Paiva DS, Fernandes L, Portugal A, Trovão J. First Genome Sequence of the Microcolonial Black Fungus Saxispiralis lemnorum MUM 23.14: Insights into the Unique Genomic Traits of the Aeminiaceae Family. Microorganisms 2024; 12:104. [PMID: 38257931 PMCID: PMC10820743 DOI: 10.3390/microorganisms12010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/15/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Saxispiralis lemnorum MUM 23.14 is an extremotolerant microcolonial black fungus, originally isolated from a biodeteriorated limestone artwork in Portugal. This recently introduced species belongs to the Aeminiaceae family, representing the second member of this monophyletic clade. This fungus exhibits a unique set of characteristics, including xerophily, cold tolerance, high UV radiation tolerance, and an exceptional ability to thrive in NaCl concentrations of up to 30% while also enduring pH levels ranging from 5 to 11. To gain insights into its genomic traits associated with stress resistance mechanisms, specialization, and their potential implications in stone biodeterioration, we conducted a comprehensive genome sequencing and analysis. This draft genome not only marks the first for the Saxispiralis genus but also the second for the Aeminiaceae family. Furthermore, we performed two comparative genomic analyses: one focusing on the closest relative within the Aeminiaceae family, Aeminium ludgeri, and another encompassing the genome of different extremotolerant black fungi. In this study, we successfully achieved high genome completeness for S. lemnorum and confirmed its close phylogenetic relationship to A. ludgeri. Our findings revealed traits contributing to its extremophilic nature and provided insights into potential mechanisms contributing to stone biodeterioration. Many traits are common to both Aeminiaceae species and are shared with other black fungi, while numerous unique traits may be attributed to species-specific characteristics.
Collapse
Affiliation(s)
- Diana S. Paiva
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal (J.T.)
| | - Luís Fernandes
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal (J.T.)
| | - António Portugal
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal (J.T.)
- FitoLab—Laboratory for Phytopathology, Instituto Pedro Nunes (IPN), Rua Pedro Nunes, 3030-199 Coimbra, Portugal
- TERRA—Associate Laboratory for Sustainable Land Use and Ecosystem Services, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Trovão
- Centre for Functional Ecology (CFE)—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal (J.T.)
| |
Collapse
|
18
|
Herzig M, Hyötyläinen T, Vettese GF, Law GTW, Vierinen T, Bomberg M. Altering environmental conditions induce shifts in simulated deep terrestrial subsurface bacterial communities-Secretion of primary and secondary metabolites. Environ Microbiol 2024; 26:e16552. [PMID: 38098179 DOI: 10.1111/1462-2920.16552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/24/2023] [Indexed: 01/30/2024]
Abstract
The deep terrestrial subsurface (DTS) harbours a striking diversity of microorganisms. However, systematic research on microbial metabolism, and how varying groundwater composition affects the bacterial communities and metabolites in these environments is lacking. In this study, DTS groundwater bacterial consortia from two Fennoscandian Shield sites were enriched and studied. We found that the enriched communities from the two sites consisted of distinct bacterial taxa, and alterations in the growth medium composition induced changes in cell counts. The lack of an exogenous organic carbon source (ECS) caused a notable increase in lipid metabolism in one community, while in the other, carbon starvation resulted in low overall metabolism, suggesting a dormant state. ECS supplementation increased CO2 production and SO4 2- utilisation, suggesting activation of a dissimilatory sulphate reduction pathway and sulphate-reducer-dominated total metabolism. However, both communities shared common universal metabolic features, most probably involving pathways needed for the maintenance of cell homeostasis (e.g., mevalonic acid pathway). Collectively, our findings indicate that the most important metabolites related to microbial reactions under varying growth conditions in enriched DTS communities include, but are not limited to, those linked to cell homeostasis, osmoregulation, lipid biosynthesis and degradation, dissimilatory sulphate reduction and isoprenoid production.
Collapse
Affiliation(s)
- Merja Herzig
- Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Chemistry, Czech Technical University in Prague, Prague, Czech Republic
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Tuulia Hyötyläinen
- School of Science and Technology, EnForce, Environment and Health and Systems Medicine, Örebro University, Örebro, Sweden
| | - Gianni F Vettese
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Gareth T W Law
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Taavi Vierinen
- Radiochemistry Unit, Faculty of Science, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland, Espoo, Finland
| |
Collapse
|
19
|
Silveira d'Almeida G, Casius A, Henderson JC, Knuesel S, Aphasizhev R, Aphasizheva I, Manning AC, Lowe TM, Alfonzo JD. tRNA Tyr has an unusually short half-life in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2023; 29:1243-1254. [PMID: 37197826 PMCID: PMC10351884 DOI: 10.1261/rna.079674.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Following transcription, tRNAs undergo a series of processing and modification events to become functional adaptors in protein synthesis. Eukaryotes have also evolved intracellular transport systems whereby nucleus-encoded tRNAs may travel out and into the nucleus. In trypanosomes, nearly all tRNAs are also imported from the cytoplasm into the mitochondrion, which lacks tRNA genes. Differential subcellular localization of the cytoplasmic splicing machinery and a nuclear enzyme responsible for queuosine modification at the anticodon "wobble" position appear to be important quality control mechanisms for tRNATyr, the only intron-containing tRNA in T. brucei Since tRNA-guanine transglycosylase (TGT), the enzyme responsible for Q formation, cannot act on an intron-containing tRNA, retrograde nuclear transport is an essential step in maturation. Unlike maturation/processing pathways, the general mechanisms of tRNA stabilization and degradation in T. brucei are poorly understood. Using a combination of cellular and molecular approaches, we show that tRNATyr has an unusually short half-life. tRNATyr, and in addition tRNAAsp, also show the presence of slow-migrating bands during electrophoresis; we term these conformers: alt-tRNATyr and alt-tRNAAsp, respectively. Although we do not know the chemical or structural nature of these conformers, alt-tRNATyr has a short half-life resembling that of tRNATyr; the same is not true for alt-tRNAAsp We also show that RRP44, which is usually an exosome subunit in other organisms, is involved in tRNA degradation of the only intron-containing tRNA in T. brucei and is partly responsible for its unusually short half-life.
Collapse
Affiliation(s)
- Gabriel Silveira d'Almeida
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ananth Casius
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Jeremy C Henderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sebastian Knuesel
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston 02118, USA
| | - Aidan C Manning
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Todd M Lowe
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, California 95064, USA
| | - Juan D Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
20
|
Abstract
The study of eukaryotic tRNA processing has given rise to an explosion of new information and insights in the last several years. We now have unprecedented knowledge of each step in the tRNA processing pathway, revealing unexpected twists in biochemical pathways, multiple new connections with regulatory pathways, and numerous biological effects of defects in processing steps that have profound consequences throughout eukaryotes, leading to growth phenotypes in the yeast Saccharomyces cerevisiae and to neurological and other disorders in humans. This review highlights seminal new results within the pathways that comprise the life of a tRNA, from its birth after transcription until its death by decay. We focus on new findings and revelations in each step of the pathway including the end-processing and splicing steps, many of the numerous modifications throughout the main body and anticodon loop of tRNA that are so crucial for tRNA function, the intricate tRNA trafficking pathways, and the quality control decay pathways, as well as the biogenesis and biology of tRNA-derived fragments. We also describe the many interactions of these pathways with signaling and other pathways in the cell.
Collapse
Affiliation(s)
- Eric M Phizicky
- Department of Biochemistry and Biophysics and Center for RNA Biology, University of Rochester School of Medicine, Rochester, New York 14642, USA
| | - Anita K Hopper
- Department of Molecular Genetics and Center for RNA Biology, Ohio State University, Columbus, Ohio 43235, USA
| |
Collapse
|
21
|
Singpant P, Tubsuwan A, Sakdee S, Ketterman AJ, Jearawiriyapaisarn N, Kurita R, Nakamura Y, Songdej D, Tangprasittipap A, Bhukhai K, Chiangjong W, Hongeng S, Saisawang C. Recombinant Cas9 protein production in an endotoxin-free system and evaluation with editing the BCL11A gene in human cells. Protein Expr Purif 2023:106313. [PMID: 37276914 DOI: 10.1016/j.pep.2023.106313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Many therapeutic proteins are expressed in Escherichia coli bacteria for the low cost and high yield obtained. However, these gram-negative bacteria also generate undesirable endotoxin byproducts such as lipopolysaccharides (LPS). These endotoxins can induce a human immune response and cause severe inflammation. To mitigate this problem, we have employed the ClearColi BL21 (DE3) endotoxin-free cells as an expression host for Cas9 protein production. Cas9 is an endonuclease enzyme that plays a key role in the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR associated protein 9 (CRISPR/Cas9) genome editing technique. This technology is very promising for use in diagnostics as well as treatment of diseases, especially for genetic diseases such as thalassemia. The potential uses for this technology thus generate a considerable interest for Cas9 utilization as a therapeutic protein in clinical treatment. Therefore, special care in protein production should be a major concern. Accordingly, we expressed the Cas9 protein in endotoxin-free bacterial cells achieving 99% purity with activity comparable to commercially available Cas9. Our protocol therefore yields a cost-effective product suitable for invitro experiments with stem cells.
Collapse
Affiliation(s)
- Passanan Singpant
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Alisa Tubsuwan
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Somsri Sakdee
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Albert J Ketterman
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Natee Jearawiriyapaisarn
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ryo Kurita
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Duantida Songdej
- Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Amornrat Tangprasittipap
- Office of Research, Academic Affairs and Innovations, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Wararat Chiangjong
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suradej Hongeng
- Pediatric Hematology-Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Chonticha Saisawang
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, 25/25 Putthamonthol Road 4, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
22
|
Ying S, Li P, Wang J, Chen K, Zou Y, Dai M, Xu K, Feng G, Zhang C, Jiang H, Li W, Zhang Y, Zhou Q. tRF-Gln-CTG-026 ameliorates liver injury by alleviating global protein synthesis. Signal Transduct Target Ther 2023; 8:144. [PMID: 37015921 PMCID: PMC10073094 DOI: 10.1038/s41392-023-01351-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 04/06/2023] Open
Abstract
tsRNAs (tRNA-derived small RNAs), as products of the stress response, exert considerable influence on stress response and injury regulation. However, it remains largely unclear whether tsRNAs can ameliorate liver injury. Here, we demonstrate the roles of tsRNAs in alleviating liver injury by utilizing the loss of NSun2 (NOP2/Sun domain family, member 2) as a tsRNAs-generating model. Mechanistically, the loss of NSun2 reduces methyluridine-U5 (m5U) and cytosine-C5 (m5C) of tRNAs, followed by the production of various tsRNAs, especially Class I tsRNAs (tRF-1s). Through further screening, we show that tRF-Gln-CTG-026 (tG026), the optimal tRF-1, ameliorates liver injury by repressing global protein synthesis through the weakened association between TSR1 (pre-rRNA-processing protein TSR1 homolog) and pre-40S ribosome. This study indicates the potential of tsRNA-reduced global protein synthesis in liver injury and repair, suggesting a potential therapeutic strategy for liver injury.
Collapse
Affiliation(s)
- Sunyang Ying
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengcheng Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University of China, Harbin, 150030, China
| | - Jiaqiang Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaiqiong Chen
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Moyu Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Xu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Changjian Zhang
- Central Laboratory of the Sixth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regenerative Medicine, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
23
|
U A, Viswam P, Kattupalli D, Eppurathu Vasudevan S. Elucidation of transfer RNAs as stress regulating agents and the experimental strategies to conceive the functional role of tRNA-derived fragments in plants. Crit Rev Biotechnol 2023; 43:275-292. [PMID: 35382663 DOI: 10.1080/07388551.2022.2026288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In plants, the transfer RNAs (tRNAs) exhibit their profound influence in orchestrating diverse physiological activities like cell growth, development, and response to several surrounding stimuli. The tRNAs, which were known to restrict their function solely in deciphering the codons, are now emerging as frontline defenders in stress biology. The plants that are constantly confronted with a huge panoply of stresses rely on tRNA-mediated stress regulation by altering the tRNA abundance, curbing the transport of tRNAs, fragmenting the mature tRNAs during stress. Among them, the studies on the generation of transfer RNA-derived fragments (tRFs) and their biological implication in stress response have attained huge interest. In plants, the tRFs hold stable expression patterns and regulate biological functions under diverse environmental conditions. In this review, we discuss the fate of plant tRNAs upon stress and thereafter how the tRFs are metamorphosed into sharp ammunition to wrestle with stress. We also address the various methods developed to date for uncovering the role of tRFs and their function in plants.
Collapse
Affiliation(s)
- Aswathi U
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Pooja Viswam
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | - Divya Kattupalli
- Rajiv Gandhi Centre for Biotechnology, Transdisciplinary Biology Laboratory, Thiruvananthapuram, India
| | | |
Collapse
|
24
|
Trinquier A, Condon C, Braun F. Effect of tRNA Maturase Depletion on Levels and Stabilities of Ribosome Assembly Cofactor and Other mRNAs in Bacillus subtilis. Microbiol Spectr 2023; 11:e0513422. [PMID: 36840557 PMCID: PMC10100781 DOI: 10.1128/spectrum.05134-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
The impact of translation on mRNA stability can be varied, ranging from a protective effect of ribosomes that shield mRNA from RNases to preferentially exposing sites of RNase cleavage. These effects can change depending on whether ribosomes are actively moving along the mRNA or stalled at particular sequences or structures or awaiting charged tRNAs. We recently observed that depleting Bacillus subtilis cells of their tRNA maturation enzymes RNase P and RNase Z led to altered mRNA levels of a number of assembly factors involved in the biogenesis of the 30S ribosomal subunit. Here, we extended this study to other assembly factor and non-assembly factor mRNAs in B. subtilis. We additionally identified multiple transcriptional and translational layers of regulation of the rimM operon mRNA that occur in response to the depletion of functional tRNAs. IMPORTANCE The passage of ribosomes across individual mRNAs during translation can have different effects on their degradation, ranging from a protective effect by shielding from ribonucleases to, in some cases, making the mRNA more vulnerable to RNase action. We recently showed that some mRNAs coding for proteins involved in ribosome assembly were highly sensitive to the availability of functional tRNA. Using strains depleted of the major tRNA processing enzymes RNase P and RNase Z, we expanded this observation to a wider set of mRNAs, including some unrelated to ribosome biogenesis. We characterized the impact of tRNA maturase depletion on the rimM operon mRNA and show that it is highly complex, with multiple levels of transcriptional and posttranscriptional effects coming into play.
Collapse
Affiliation(s)
- Aude Trinquier
- CNRS, Université Paris Cité, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Ciarán Condon
- CNRS, Université Paris Cité, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Frédérique Braun
- CNRS, Université Paris Cité, Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| |
Collapse
|
25
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
26
|
Zeng J, Xie Y, Zhang H, Zhang Y, Zhang Y, Liu L, Hu Q, Zhou L, Gao L, Tan W, Fu Z, Lu J. Protective roles of tRNA-derived small RNA tRF-Ile-AAT-019 in pathological progression of psoriasis. Exp Dermatol 2023; 32:135-145. [PMID: 36251463 DOI: 10.1111/exd.14689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/27/2022]
Abstract
Psoriasis is a chronic recurrent inflammatory skin disease that is characterized by abnormal proliferation and differentiation of keratinocytes (KCs), angiogenesis and skin inflammation. Transfer RNA fragments (tRFs) are tRNA-derived small RNAs (tsRNAs), which possess regulatory functions in many diseases. Their potential roles in the pathological development of psoriasis have not been established. We first identified differentially expressed (DE) tRFs from psoriatic skin lesions using small RNA sequencing, and collected additional clinical samples for validation. Then, we investigated the function and mechanism of target tRFs in vitro. As a result of our investigation: we identified 234 DE transcripts in psoriatic skin lesions compared with normal controls. Further functional analysis showed the downregulation of tRF-Ile-AAT-019 in psoriatic lesions plays a critical role in pathogenesis since it could target 3'UTR of the serine protease serpin protein E1 (SERPINE1) gene. We next demonstrated that tRF-Ile-AAT-019 could suppress SERPINE1, thus leading to decreased expressions of vascular endothelial growth factor but increased expressions of keratinocytes (KCs) differentiation markers including Keratin1 and Involucrin. In conclusion, tRF-Ile-AAT-019 plays a protective role in the pathological progression of psoriasis via targeting SERPINE1, resulting in regulation of KCs differentiation and vascular proliferation biomarkers and providing a potential novel targeting pathway for the disease treatment.
Collapse
Affiliation(s)
- Jinrong Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yajie Xie
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hanyi Zhang
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuezhong Zhang
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Yue Zhang
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Liyao Liu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lu Zhou
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Gao
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, Columbia, South Carolina, USA.,Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina, USA
| | - Zhibing Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
27
|
Jastrzębska M, Giebułtowicz J, Ciechanowicz AK, Wrzesień R, Bielecki W, Bobrowska-Korczak B. Effect of Polyphenols and Zinc Co-Supplementation on the Development of Neoplasms in Rats with Breast Cancer. Foods 2023; 12:foods12020356. [PMID: 36673448 PMCID: PMC9857727 DOI: 10.3390/foods12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/29/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023] Open
Abstract
The aim of the study was to evaluate the effect of selected polyphenolic compounds: epicatechin, apigenin, and naringenin, administered separately or in combination with zinc (Zn), on the growth and development of the neoplastic process induced by 7,12-dimethylbenz[a]anthracene (DMBA) in rats. The impact of supplementation with the above-mentioned compounds on the content of modified derivatives: 1-methyladenosine, N6-methyl-2'-deoxyadenosine, O-methylguanosine, 7-methylguanine, 3-methyladenine, 1-methylguanine, 2-amino-6,8-dihydroxypurine, and 8-hydroxy-2'-deoxyguanosine in the urine of rats with mammary cancer was also assessed. Female Sprague-Dawley rats divided into 7 groups were used in the study: animals without supplementation and animals supplemented with apigenin, epicatechin, and naringenin separately or in combination with zinc. To induce mammary cancer, rats were treated with DMBA. Modified derivatives were determined by a validated high-performance liquid chromatography coupled to mass spectrometry method. Based on the obtained results, it can be said that supplementation of the animals with naringenin inhibits the development and progression of the neoplastic process in rats treated with 7,12-dimethylbenzanthracene. Neoplastic tumors were found in only 2 of 8 rats (incidence: 25%) and were considered to be at most grade 1 malignancy. The first palpable tumors in the group of animals receiving naringenin appeared two-three weeks later when compared to other groups. The combination of zinc with flavonoids (apigenin, epicatechin, and naringenin) seems to stimulate the process of carcinogenesis. The level of N6-methyl-2'-deoxyadenosine and 3-methyladenine in the urine of rats was statistically significantly higher in the groups supplemented with apigenin, epicatechin, and naringenin administered in combination with Zn than in the groups receiving only polyphenolic compounds. In conclusion, supplementation of rats with selected flavonoids administered separately or in combination with Zn has an impact on the development of neoplasms and the level of modified nucleosides in the urine of rats with breast cancer. Our results raise the question of whether simultaneous diet supplementation with more than one anti-cancer agent may reduce/stimulate the risk of carcinogenesis.
Collapse
Affiliation(s)
- Martyna Jastrzębska
- Department of Bromatology, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
| | - Joanna Giebułtowicz
- Department of Drug Analysis, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
| | - Andrzej K. Ciechanowicz
- Laboratory of Regenerative Medicine, Medical University of Warsaw, S. Banacha 1b Street, 02-097 Warsaw, Poland
| | - Robert Wrzesień
- Central Laboratory of Experimental Animals, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
| | - Wojciech Bielecki
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Live Sciences, Nowoursynowska 159c Street, 02-787 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Bromatology, Warsaw Medical University, S. Banacha 1 Street, 02-097 Warsaw, Poland
- Correspondence: ; Tel.: +48-225720789
| |
Collapse
|
28
|
Guan L, Grigoriev A. tatDB: a database of Ago1-mediated targets of transfer RNA fragments. Nucleic Acids Res 2023; 51:D297-D305. [PMID: 36350638 PMCID: PMC9825446 DOI: 10.1093/nar/gkac1018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/16/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
tRNA-derived fragments (tRFs) are a class of emerging post-transcriptional regulators of gene expression likely binding to the transcripts of target genes. However, only a few tRFs targets have been experimentally validated, making it hard to extrapolate the functions or binding mechanisms of tRFs. The paucity of resources supporting the identification of the targets of tRFs creates a bottleneck in the fast-developing field. We have previously analyzed chimeric reads in crosslinked Argonaute1-RNA complexes to help infer the guide-target pairs and binding mechanisms of multiple tRFs based on experimental data in human HEK293 cells. To efficiently disseminate these results to the research community, we designed a web-based database tatDB (targets of tRFs DataBase) populated with close to 250 000 experimentally determined guide-target pairs with ∼23 000 tRF isoforms. tatDB has a user-friendly interface with flexible query options/filters allowing one to obtain comprehensive information on given tRFs (or targets). Modes of interactions are supported by secondary structures of potential guide-target hybrids and binding motifs, essential for understanding the targeting mechanisms of tRFs. Further, we illustrate the value of the database on an example of hypothesis-building for a tRFs potentially involved in the lifecycle of the SARS-CoV-2 virus. tatDB is freely accessible at https://grigoriev-lab.camden.rutgers.edu/tatdb.
Collapse
Affiliation(s)
- Lingyu Guan
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Andrey Grigoriev
- Department of Biology, Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| |
Collapse
|
29
|
Skariyachan S, Praveen PKU, Uttarkar A, Niranjan V. Computational design of prospective molecular targets for Burkholderia cepacia complex by molecular docking and dynamic simulation studies. Proteins 2023; 91:724-738. [PMID: 36601892 DOI: 10.1002/prot.26462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The study aimed to screen prospective molecular targets of BCC and potential natural lead candidates as effective binders by computational modeling, molecular docking, and dynamic (MD) simulation studies. Based on the virulent functions, tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein (mnmC) and pyrimidine/purine nucleoside phosphorylase (ppnP) were selected as the prospective molecular targets. In the absence of experimental data, the three-dimensional (3D) structures of these targets were computationally predicted. After a thorough literature survey and database search, the drug-likeness, and pharmacokinetic properties of 70 natural molecules were computationally predicted and the effectual binding of the best lead molecules against both the targets was predicted by molecular docking. The stabilities of the best-docked complexes were validated by MD simulation and the binding energy calculations were carried out by MM-GBSA approaches. The present study revealed that the hypothetical models of mnmC and ppnP showed stereochemical accuracy. The study also showed that among 70 natural compounds subjected to computational screening, Honokiol (3',5-Di(prop-2-en-1-yl) [1,1'-biphenyl]-2,4'-diol) present in Magnolia showed ideal drug-likeness, pharmacokinetic features and showed effectual binding with mnmC and ppnP (binding energies -7.3 kcal/mol and -6.6 kcal/mol, respectively). The MD simulation and GBSA calculation studies showed that the ligand-protein complexes stabilized throughout tMD simulation. The present study suggests that Honokiol can be used as a potential lead molecule against mnmC and ppnP targets of BCC and this study provides insight into further experimental validation for alternative lead development against drug resistant BCC.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- Department of Microbiology, St. Pius X College Rajapuram, Kasaragod, Kerala, India
| | | | - Akshay Uttarkar
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| | - Vidya Niranjan
- Department of Biotechnology, RV College of Engineering, Bengaluru, Karnataka, India
| |
Collapse
|
30
|
Rawat J, Bhambri A, Pandey U, Banerjee S, Pillai B, Gadgil M. Amino acid abundance and composition in cell culture medium affects trace metal tolerance and cholesterol synthesis. Biotechnol Prog 2023; 39:e3298. [PMID: 36053936 DOI: 10.1002/btpr.3298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Abstract
Amino acid compositions of cell culture media are empirically designed to enhance cell growth and productivity and vary both across media formulations and over the course of culture due to imbalance in supply and consumption. The interconnected nature of the amino acid transporters and metabolism suggests that changes in amino acid composition can affect cell physiology. In this study, we explore the effect of a step change in amino acid composition from a DMEM: F12-based medium to a formulation varying in relative abundances of all amino acids, evaluated at two amino acid concentrations (lean LAA vs. rich HAA). Cell growth was inhibited in LAA but not HAA. In addition to the expected effects on expression of the cell cycle, amino acid response and mTOR pathway genes in LAA, we observed an unanticipated effect on zinc uptake and efflux genes. This was accompanied by a lower tolerance to zinc supplementation in LAA but not in the other formulations. Histidine was sufficient but not necessary to prevent such zinc toxicity. Additionally, an unanticipated downregulation of genes in the cholesterol synthesis pathway was observed in HAA, accompanied by an increase in cellular cholesterol content, which may depend on the relative abundances of glutamine and other amino acids. This study shows that changes in the amino acid composition without any evident effect on growth may have profound effects on metabolism. Such analyses can help rationalize the designing of medium and feed formulations for bioprocess applications beyond replenishment of consumed components.
Collapse
Affiliation(s)
- Jyoti Rawat
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India
| | - Aksheev Bhambri
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ujjiti Pandey
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India
| | - Sanchita Banerjee
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India
| | - Beena Pillai
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India
| |
Collapse
|
31
|
tncRNA Toolkit: A pipeline for convenient identification of RNA (tRNA)-derived non-coding RNAs. MethodsX 2022; 10:101991. [PMID: 36632599 PMCID: PMC9826945 DOI: 10.1016/j.mex.2022.101991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022] Open
Abstract
Insights into the eukaryotic gene regulation networks have improved due to the advent of diverse classes of non-coding RNAs. The transfer RNA (tRNA)-derived non-coding RNAs or tncRNAs is a novel class of non-coding RNAs, shown to regulate gene expression at transcription and translation levels. Here, we present a pipeline 'tncRNA Toolkit' for accurately identifying tncRNAs using small RNA sequencing (sRNA-seq) data. Previously, we identified tncRNA in six major angiosperms by utilizing our pipeline and highlighted the significant points regarding their generation and functions. The 'tncRNA Toolkit' is available at the URL: http://www.nipgr.ac.in/tncRNA. The scripts are written in bash and Python3 programming languages. The program can be efficiently run as a standalone command-line tool and installed in any Linux-based Operating System (OS). The user can run this program by providing the input of sRNA-seq data and genome file.The various features of the 'tncRNA Toolkit' are as follows:•Major tncRNA classes identified by this tool include tRF-5, tRF-3, tRF-1, 5'tRH, 3'tRH, and leader tRF. Also, it categorizes miscellaneous tncRNAs as other tRF.•It provides the following information for each identified tncRNA viz. tncRNA class, raw and normalized read count (RPM), read length, progenitor tRNA information (amino acid, anticodon, locus, strand), tncRNA sequence, and tRNA modification sites.•We hope to facilitate quick and reliable tncRNA identification, which will boost the exploration of this novel class of non-coding RNAs and their relevance in the living world, including plants.
Collapse
|
32
|
Zheng B, Song X, Wang L, Zhang Y, Tang Y, Wang S, Li L, Wu Y, Song X, Xie L. Plasma exosomal tRNA-derived fragments as diagnostic biomarkers in non-small cell lung cancer. Front Oncol 2022; 12:1037523. [PMID: 36387119 PMCID: PMC9659620 DOI: 10.3389/fonc.2022.1037523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND tRNA derived small RNAs (tRFs) have recently received extensive attention; however, the effects of tRFs in exosome as biomarkers has been less studied. The objective of this study was to validate novel diagnostic exosomal tRFs with sensitivity and specificity for non-small cell lung cancer (NSCLC). METHODS Exosomes extracted from plasma of NSCLC patients and healthy individuals were identified by transmission electron microscopy (TEM), qNano and western blots. The differentially expressed tRFs were screened by high-throughput sequencing in plasma exosomes of NSCLC patients and healthy individuals, and further verified by Quantitative Real-Time PCR (qRT-PCR). To assess the diagnostic efficacy of exosomal tRFs for NSCLC, receiver operating characteristic (ROC) curves were used next. RESULTS The expression levels of exosomal tRF-Leu-TAA-005, tRF-Asn-GTT-010, tRF-Ala-AGC-036, tRF-Lys-CTT-049, and tRF-Trp-CCA-057 were significantly decreased in NSCLC patients and early-stage NSCLC patients compared to healthy individuals. Notably, the exepression of tRF-Leu-TAA-005, tRF-Asn-GTT-010, tRF-Ala-AGC-036, tRF-Lys-CTT-049, and tRF-Trp-CCA-057 in the exosomes were higher than the exosome depleted supernatant (EDS). CONCLUSIONS Our results showed that the levels of exosomal tRF-Leu-TAA-005, tRF-Asn-GTT-010, tRF-Ala-AGC-036, tRF-Lys-CTT-049, and tRF-Trp-CCA-057 were significantly downregulated in NSCLC patients. This suggests that these five exosomal tRFs may be promising diagnostic biomarkers for NSCLC.
Collapse
Affiliation(s)
- Baibing Zheng
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yue Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Youyong Tang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shiwen Wang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Yawen Wu
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Li Xie
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
33
|
George S, Rafi M, Aldarmaki M, ElSiddig M, Al Nuaimi M, Amiri KMA. tRNA derived small RNAs—Small players with big roles. Front Genet 2022; 13:997780. [PMID: 36199575 PMCID: PMC9527309 DOI: 10.3389/fgene.2022.997780] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/22/2022] Open
Abstract
In the past 2 decades, small non-coding RNAs derived from tRNA (tsRNAs or tRNA derived fragments; tRFs) have emerged as new powerful players in the field of small RNA mediated regulation of gene expression, translation, and epigenetic control. tRFs have been identified from evolutionarily divergent organisms from Archaea, the higher plants, to humans. Recent studies have confirmed their roles in cancers and other metabolic disorders in humans and experimental models. They have been implicated in biotic and abiotic stress responses in plants as well. In this review, we summarize the current knowledge on tRFs including types of tRFs, their biogenesis, and mechanisms of action. The review also highlights recent studies involving differential expression profiling of tRFs and elucidation of specific functions of individual tRFs from various species. We also discuss potential considerations while designing experiments involving tRFs identification and characterization and list the available bioinformatics tools for this purpose.
Collapse
Affiliation(s)
- Suja George
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Rafi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Maitha Aldarmaki
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohamed ElSiddig
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mariam Al Nuaimi
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled M. A. Amiri
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- *Correspondence: Khaled M. A. Amiri,
| |
Collapse
|
34
|
M S, N RP, Chakraborty A, Rajendrasozhan S. Proteomic profiling of Deinococcus radiodurans with response to thioredoxin reductase inhibitor and ionizing radiation treatment. J Proteomics 2022; 267:104697. [PMID: 35995383 DOI: 10.1016/j.jprot.2022.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
This study explains the importance of cellular redox system in preserving the proteome of the radioresistant Deinococcus radiodurans. The thioredoxin reductase (TrxR) redox system was inhibited by ebselen (10 μM), and then the bacterium was exposed to 4 kGy of ionizing radiation. The differentially expressed proteins were analyzed using label-free quantitative (LFQ) proteomics. The 4 kGy radiation treatment increases the expression of stress response proteins like osmotically inducible protein OsmC, catalase, and metallophosphoesterase compared to control. Ebselen plus radiation treatment augments oxidoreductases proteins in D. radiodurans. Further, the proteins involved in glycolysis, tricarboxylic acetic acid (TCA) and proteins like proteases, peptidase, and peptide transporters were significantly decreased in the ebselen plus radiation group compared to radiation treated group. Further, ebselen plus radiation treatment increases the ATP-binding cassette (ABC) transporters involved in the efflux of toxic chemicals and nutrient uptake and the stress response related membrane protein like S-layer homology domain-containing protein in D. radiodurans. Thus, the results show that the altered redox status via inhibition of TrxR redox system significantly affects the expression of essential cellular proteins for the survival. The cellular content of D. radiodurans may be used to handle redox imbalances in the normal cells during cancer radiotherapy. SIGNIFICANCE: Deinococcus radiodurans is a popular radioresistance organism with efficient antioxidant systems and DNA repair mechanisms. There are many antioxidant systems and small molecules that responsible for its resistance. The importance of thiol based antioxidant systems in its resistance property has not fully studied yet. Thioredoxin reductase is an important disulfide containing protein that involved in maintaining redox homeostasis. The TrxR inhibition affects the cell survival and synthesis of molecules against ionizing radiation. In this study we are reporting the effects of TrxR inhibitor on proteome of D. radiodurans upon ionizing radiation. This study reveals the significance of TrxR antioxidant system on the proteome of D. radiodurans. The inhibition of TrxR antioxidant system and the subsequent disturbances in the proteome content makes the organism vulnerable to oxidative stress.
Collapse
Affiliation(s)
- Sudharsan M
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Rajendra Prasad N
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, 608 002, Tamilnadu, India
| | - Anindita Chakraborty
- UGC-DAE Consortium for Scientific Research, Kolkata Centre, 700098, West Bengal, India
| | | |
Collapse
|
35
|
Giarimoglou N, Kouvela A, Maniatis A, Papakyriakou A, Zhang J, Stamatopoulou V, Stathopoulos C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics (Basel) 2022; 11:antibiotics11091243. [PMID: 36140022 PMCID: PMC9495366 DOI: 10.3390/antibiotics11091243] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022] Open
Abstract
Riboswitches are structured non-coding RNAs found in the 5′ UTR of important genes for bacterial metabolism, virulence and survival. Upon the binding of specific ligands that can vary from simple ions to complex molecules such as nucleotides and tRNAs, riboswitches change their local and global mRNA conformations to affect downstream transcription or translation. Due to their dynamic nature and central regulatory role in bacterial metabolism, riboswitches have been exploited as novel RNA-based targets for the development of new generation antibacterials that can overcome drug-resistance problems. During recent years, several important riboswitch structures from many bacterial representatives, including several prominent human pathogens, have shown that riboswitches are ideal RNA targets for new compounds that can interfere with their structure and function, exhibiting much reduced resistance over time. Most interestingly, mainstream antibiotics that target the ribosome have been shown to effectively modulate the regulatory behavior and capacity of several riboswitches, both in vivo and in vitro, emphasizing the need for more in-depth studies and biological evaluation of new antibiotics. Herein, we summarize the currently known compounds that target several main riboswitches and discuss the role of mainstream antibiotics as modulators of T-box riboswitches, in the dawn of an era of novel inhibitors that target important bacterial regulatory RNAs.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Alexandros Maniatis
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 15341 Athens, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | | | - Constantinos Stathopoulos
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
- Correspondence: ; Tel.: +30-2610-997932
| |
Collapse
|
36
|
Zanki V, Bozic B, Mocibob M, Ban N, Gruic-Sovulj I. A pair of isoleucyl-tRNA synthetases in Bacilli fulfills complementary roles to keep fast translation and provide antibiotic resistance. Protein Sci 2022; 31:e4418. [PMID: 36757682 PMCID: PMC9909778 DOI: 10.1002/pro.4418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/05/2022] [Accepted: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Isoleucyl-tRNA synthetase (IleRS) is an essential enzyme that covalently couples isoleucine to the corresponding tRNA. Bacterial IleRSs group in two clades, ileS1 and ileS2, the latter bringing resistance to the natural antibiotic mupirocin. Generally, bacteria rely on either ileS1 or ileS2 as a standalone housekeeping gene. However, we have found an exception by noticing that Bacillus species with genomic ileS2 consistently also keep ileS1, which appears mandatory in the family Bacillaceae. Taking Priestia (Bacillus) megaterium as a model organism, we showed that PmIleRS1 is constitutively expressed, while PmIleRS2 is stress-induced. Both enzymes share the same level of the aminoacylation accuracy. Yet, PmIleRS1 exhibited a two-fold faster aminoacylation turnover (kcat ) than PmIleRS2 and permitted a notably faster cell-free translation. At the same time, PmIleRS2 displayed a 104 -fold increase in its Ki for mupirocin, arguing that the aminoacylation turnover in IleRS2 could have been traded-off for antibiotic resistance. As expected, a P. megaterium strain deleted for ileS2 was mupirocin-sensitive. Interestingly, an attempt to construct a mupirocin-resistant strain lacking ileS1, a solution not found among species of the family Bacillaceae in nature, led to a viable but compromised strain. Our data suggest that PmIleRS1 is kept to promote fast translation, whereas PmIleRS2 is maintained to provide antibiotic resistance when needed. This is consistent with an emerging picture in which fast-growing organisms predominantly use IleRS1 for competitive survival.
Collapse
Affiliation(s)
- Vladimir Zanki
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Bartol Bozic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Mocibob
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Zurich, Switzerland
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
37
|
Singh A, Zahra S, Das D, Kumar S. PtRNAdb: a web resource of plant tRNA genes from a wide range of plant species. 3 Biotech 2022; 12:185. [PMID: 35875176 PMCID: PMC9300776 DOI: 10.1007/s13205-022-03255-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/03/2022] [Indexed: 11/28/2022] Open
Abstract
tRNA, as well as their derived products such as short interspersed nuclear elements (SINEs), pseudogenes, and transfer RNA (tRNA)-derived fragments (tRFs), have now been shown to be vital for cellular life, functioning, and adaptation during different stress conditions in all diverse life forms. In this study, we have developed PtRNAdb (www.nipgr.ac.in/PtRNAdb), a plant-exclusive tRNA database containing 113,849 tRNA gene sequences from phylogenetically diverse plant species. We have analyzed a total of 106 nuclear, 89 plastidial, and 38 mitochondrial genomes of plants by the tRNAscan-SE software package, and after careful curation of the output data, we integrated the data and developed this database. The information about the tRNA gene sequences obtained was further enriched with a consensus sequence-based study of tRNA genes based on their isoacceptors and isodecoders. We have also built covariance models based on the isoacceptors and isodecoders of all the tRNA sequences using the infernal tool. The user can also perform BLAST not only against PtRNAdb entries but also against all the tRNA sequences stored in the PlantRNA database and annotated tRNA genes across the plant kingdom available at NCBI. This resource is believed to be of high utility for plant researchers as well as molecular biologists to carry out further exploration of the plant tRNAome on a wider spectrum, as well as for performing comparative and evolutionary studies related to tRNAs, and their derivatives across all domains of life. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03255-7.
Collapse
Affiliation(s)
- Ajeet Singh
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shafaque Zahra
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Durdam Das
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
- University of Regensburg, Regensburg, Germany
| | - Shailesh Kumar
- Bioinformatics Lab, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
38
|
Tian Q, Wang J, Cui L, Zeng W, Qiu G, Hu Q, Peng A, Zhang D, Shen L. Longitudinal physiological and transcriptomic analyses reveal the short term and long term response of Synechocystis sp. PCC6803 to cadmium stress. CHEMOSPHERE 2022; 303:134727. [PMID: 35513082 DOI: 10.1016/j.chemosphere.2022.134727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 06/14/2023]
Abstract
Due to the bioaccumulation and non-biodegradability of cadmium, Cd can pose a serious threat to ecosystem even at low concentration. Microalgae is widely distributed photosynthetic organisms in nature, which is a promising heavy metal remover and an effective industrial sewage cleaner. However, there are few detailed reports on the short-term and long-term molecular mechanisms of microalgae under Cd stress. In this study, the adsorption behavior (growth curve, Cd removal efficiency, scanning electron microscope, Fourier transform infrared spectroscopy, and dynamic change of extracellular polymeric substances), cytotoxicity (photosynthetic pigment, MDA, GSH, H2O2, O2-) and stress response mechanism of microalgae were discussed under EC50. RNA-seq detected 1413 DEGs in 4 treatment groups. These genes were related to ribosome, nitrogen metabolism, sulfur transporter, and photosynthesis, and which been proved to be Cd-responsive DEGs. WGCNA (weighted gene co-expression network analysis) revealed two main gene expression patterns, short-term stress (381 genes) and long-term stress (364 genes). The enrichment analysis of DEGs showed that the expression of genes involved in N metabolism, sulfur transporter, and aminoacyl-tRNA biosynthesis were significantly up-regulated. This provided raw material for the synthesis of the important component (cysteine) of metal chelate protein, resistant metalloprotein and transporter (ABC transporter) in the initial stage, which was also the short-term response mechanism. Cd adsorption of the first 15 min was primary dependent on membrane transporter and beforehand accumulated EPS. Simultaneously, the up-regulated glutathione S-transferase (GSTs) family proteins played a role in the initial resistance to exogenous Cd. The damaged photosynthetic system was repaired at the later stage, the expressions of glycolysis and gluconeogenesis were up-regulated, to meet the energy and substances of physiological metabolic activities. The study is the first to provide detailed short-term and long-term genomic information on microalgae responding to Cd stress. Meanwhile, the key genes in this study can be used as potential targets for algae-mediated genetic engineering.
Collapse
Affiliation(s)
- Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, China
| | - Linlin Cui
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China
| | - Qi Hu
- Department of Bioinformatics Center, NEOMICS Institute, Shenzhen, Guangdong, 518118, China
| | - Anan Peng
- School of Environmental and Chemical Engineering, Foshan University, Foshan, 528000, China
| | - Du Zhang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, 410083, China.
| |
Collapse
|
39
|
Suleiman M, Kounosu A, Murcott B, Dayi M, Pawluk R, Yoshida A, Viney M, Kikuchi T, Hunt VL. piRNA-like small RNAs target transposable elements in a Clade IV parasitic nematode. Sci Rep 2022; 12:10156. [PMID: 35710810 PMCID: PMC9203780 DOI: 10.1038/s41598-022-14247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
The small RNA (sRNA) pathways identified in the model organism Caenorhabditis elegans are not widely conserved across nematodes. For example, the PIWI pathway and PIWI-interacting RNAs (piRNAs) are involved in regulating and silencing transposable elements (TE) in most animals but have been lost in nematodes outside of the C. elegans group (Clade V), and little is known about how nematodes regulate TEs in the absence of the PIWI pathway. Here, we investigated the role of sRNAs in the Clade IV parasitic nematode Strongyloides ratti by comparing two genetically identical adult stages (the parasitic female and free-living female). We identified putative small-interfering RNAs, microRNAs and tRNA-derived sRNA fragments that are differentially expressed between the two adult stages. Two classes of sRNAs were predicted to regulate TE activity including (i) a parasite-associated class of 21-22 nt long sRNAs with a 5' uridine (21-22Us) and a 5' monophosphate, and (ii) 27 nt long sRNAs with a 5' guanine/adenine (27GAs) and a 5' modification. The 21-22Us show striking resemblance to the 21U PIWI-interacting RNAs found in C. elegans, including an AT rich upstream sequence, overlapping loci and physical clustering in the genome. Overall, we have shown that an alternative class of sRNAs compensate for the loss of piRNAs and regulate TE activity in nematodes outside of Clade V.
Collapse
Affiliation(s)
- Mona Suleiman
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Asuka Kounosu
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Ben Murcott
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Mehmet Dayi
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
- Forestry Vocational School, Duzce University, 81620, Duzce, Turkey
| | - Rebecca Pawluk
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
| | - Akemi Yoshida
- Laboratory of Genomics, Frontier Science Research Center, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Taisei Kikuchi
- Parasitology, Department of Infectious Dieses, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| | - Vicky L Hunt
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK.
| |
Collapse
|
40
|
Firsov SY, Kosherova KA, Mukha DV. Identification and functional characterization of the German cockroach, Blattella germanica, short interspersed nuclear elements. PLoS One 2022; 17:e0266699. [PMID: 35696390 PMCID: PMC9191728 DOI: 10.1371/journal.pone.0266699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 11/18/2022] Open
Abstract
In recent decades, experimental data has accumulated indicating that short interspersed nuclear elements (SINEs) can play a significant functional role in the regulation of gene expression in the host genome. In addition, molecular markers based on SINE insertion polymorphisms have been developed and are widely used for genetic differentiation of populations of eukaryotic organisms. Using routine bioinformatics analysis and publicly available genomic DNA and small RNA-seq data, we first described nine SINEs in the genome of the German cockroach, Blattella germanica. All described SINEs have tRNA promoters, and the start of their transcription begins 11 bp upstream of an "A" box of these promoters. The number of copies of the described SINEs in the B. germanica genome ranges from several copies to more than a thousand copies in a SINE-specific manner. Some of the described SINEs and their degenerate copies can be localized both in the introns of genes and loci known as piRNA clusters. piRNAs originating from piRNA clusters are shown to be mapped to seven of the nine types of SINEs described, including copies of SINEs localized in gene introns. We speculate that SINEs, localized in the introns of certain genes, may regulate the level of expression of these genes by a PIWI-related molecular mechanism.
Collapse
Affiliation(s)
- Sergei Yu. Firsov
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Karina A. Kosherova
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| | - Dmitry V. Mukha
- Vavilov Institute of General Genetics Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
41
|
Giarimoglou N, Kouvela A, Patsi I, Zhang J, Stamatopoulou V, Stathopoulos C. Lineage-specific insertions in T-box riboswitches modulate antibiotic binding and action. Nucleic Acids Res 2022; 50:5834-5849. [PMID: 35580054 PMCID: PMC9177973 DOI: 10.1093/nar/gkac359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
T-box riboswitches (T-boxes) are essential RNA regulatory elements with a remarkable structural diversity, especially among bacterial pathogens. In staphylococci, all glyS T-boxes synchronize glycine supply during synthesis of nascent polypeptides and cell wall formation and are characterized by a conserved and unique insertion in their antiterminator/terminator domain, termed stem Sa. Interestingly, in Staphylococcus aureus the stem Sa can accommodate binding of specific antibiotics, which in turn induce robust and diverse effects on T-box-mediated transcription. In the present study, domain swap mutagenesis and probing analysis were performed to decipher the role of stem Sa. Deletion of stem Sa significantly reduces both the S. aureus glyS T-box-mediated transcription readthrough levels and the ability to discriminate among tRNAGly isoacceptors, both in vitro and in vivo. Moreover, the deletion inverted the previously reported stimulatory effects of specific antibiotics. Interestingly, stem Sa insertion in the terminator/antiterminator domain of Geobacillus kaustophilus glyS T-box, which lacks this domain, resulted in elevated transcription in the presence of tigecycline and facilitated discrimination among proteinogenic and nonproteinogenic tRNAGly isoacceptors. Overall, stem Sa represents a lineage-specific structural feature required for efficient staphylococcal glyS T-box-mediated transcription and it could serve as a species-selective druggable target through its ability to modulate antibiotic binding.
Collapse
Affiliation(s)
- Nikoleta Giarimoglou
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Adamantia Kouvela
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Ioanna Patsi
- Department of Biochemistry, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
42
|
Peng G, Sun Q, Chen Y, Wu X, Guo Y, Ji H, Yang F, Dong W. A comprehensive overview of ovarian small non-coding RNAs in the late overwintering and breeding periods of Onychostoma macrolepis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100967. [PMID: 35168176 DOI: 10.1016/j.cbd.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The development of the ovary of Onychostoma macrolepis undergoes distinct annual cyclic changes in which small non-coding RNAs (sncRNAs) could play vital roles. In this study, four sncRNA classes in the ovary, including miRNA, piRNAs, tsRNA, and rsRNAs, were systematically profiled by high-throughput sequencing. In adult ovaries of O. macrolepis, 247 miRNAs and 235 tsRNAs were identified as differentially expressing in the late overwintering period (in March) and breeding period (in June). Some up-regulated sncRNAs in March, such as miR-125-1 and tRFi-Lys-CTT-1, could be involved in inhibiting biomolecule metabolism and enhancing stress tolerance during the overwintering period. Compared with the level expression of sncRNAs in March, some sncRNAs were up-regulated in June, such as miR-146-1 and tRFi-Gly-GCC-1, and could be involved in influencing molecular synthesis and metabolism, enhancing oocyte proliferation and maturation, accelerating ovarian development, and increasing fertilization of oocytes by regulating related target mRNAs. The results suggested that sncRNAs in the ovary of Onychostoma macrolepis not only reflect characteristics of the fish's physiology at different developmental periods, but also directly affect ovarian development and oocyte maturation during the breeding period. In conclusion, these results significantly advance our understanding of the roles of sncRNA during overwintering and reproduction periods, and provide a novel perspective for uncovering characteristics of the special overwintering ecology and reproductive physiology of an atypical cavefish.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingjie Guo
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
43
|
Gupta T, Malkin MG, Huang S. tRNA Function and Dysregulation in Cancer. Front Cell Dev Biol 2022; 10:886642. [PMID: 35721477 PMCID: PMC9198291 DOI: 10.3389/fcell.2022.886642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA (tRNA) is a central component of protein synthesis and plays important roles in epigenetic regulation of gene expression in tumors. tRNAs are also involved in many cell processes including cell proliferation, cell signaling pathways and stress response, implicating a role in tumorigenesis and cancer progression. The complex role of tRNA in cell regulation implies that an understanding of tRNA function and dysregulation can be used to develop treatments for many cancers including breast cancer, colon cancer, and glioblastoma. Moreover, tRNA modifications including methylation are necessary for tRNA folding, stability, and function. In response to certain stress conditions, tRNAs can be cleaved in half to form tiRNAs, or even shorter tRNA fragments (tRF). tRNA structure and modifications, tiRNA induction of stress granule formation, and tRF regulation of gene expression through the repression of translation can all impact a cell’s fate. This review focuses on how these functions of tRNAs, tiRNA, and tRFs can lead to tumor development and progression. Further studies focusing on the specific pathways of tRNA regulation could help identify tRNA biomarkers and therapeutic targets, which might prevent and treat cancers.
Collapse
Affiliation(s)
- Tania Gupta
- Virginia Commonwealth University, Richmond, VA, United States
| | - Mark G. Malkin
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Suyun Huang
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Suyun Huang,
| |
Collapse
|
44
|
Zahra S, Bhardwaj R, Sharma S, Singh A, Kumar S. PtncRNAdb: plant transfer RNA-derived non-coding RNAs (tncRNAs) database. 3 Biotech 2022; 12:105. [PMID: 35462956 PMCID: PMC8986922 DOI: 10.1007/s13205-022-03174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/21/2022] [Indexed: 11/24/2022] Open
Abstract
Specific endonucleolytic cleavage of tRNA molecules leads to the biogenesis of heterogeneously sized fragments called tRNA-derived non-coding RNAs (tncRNAs). The role of tncRNAs is well studied in human processes, and diseases including different types of cancers and other ailments. They are also generated under stress conditions in plants. Considering the potential role of tncRNAs in the plant system, we have developed a user-friendly, open-access web resource, PtncRNAdb (https://nipgr.ac.in/PtncRNAdb). PtncRNAdb consists of 4,809,503 tncRNA entries identified from ~ 2500 single-end small RNA-seq libraries from six plants, viz., Arabidopsis thaliana, Cicer arietinum, Zea mays, Oryza sativa, Medicago truncatula, and Solanum lycopersicum. It is provided with assorted options to search, browse, visualize, interpret, and download tncRNAs data. Users can perform query search using 'BLASTN' against PtncRNAdb entries. Highcharts have been included for better statistical PtncRNAdb data readability to the users. Additionally, PtncRNAdb includes 'DE tncRNAs' module for differentially expressed tncRNAs under various conditions. Their secondary structure, putative targets, interactive networks of target enrichment, and related publications are also incorporated for further interpretation of their biological functions. PtncRNAdb is an efficient, user-friendly, and exhaustive database, which will aid the ongoing research in plant tncRNAs as well as help in deciphering their role in gene regulation. We hope that it provides a promising platform for researchers to facilitate the understanding of tncRNAs, and their involvement in numerous pathways related to plant development and stress tolerance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03174-7.
Collapse
Affiliation(s)
- Shafaque Zahra
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Rohan Bhardwaj
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shikha Sharma
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ajeet Singh
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Shailesh Kumar
- Bioinformatics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
45
|
Celińska E. "Fight-flight-or-freeze" - how Yarrowia lipolytica responds to stress at molecular level? Appl Microbiol Biotechnol 2022; 106:3369-3395. [PMID: 35488934 PMCID: PMC9151528 DOI: 10.1007/s00253-022-11934-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Yarrowia lipolytica is a popular yeast species employed in multiple biotechnological production processes. High resistance to extreme environmental conditions or metabolic burden triggered by synthetically forced over-synthesis of a target metabolite has its practical consequences. The proud status of an “industrial workhorse” that Y. lipolytica has gained is directly related to such a quality of this species. With the increasing amount of knowledge coming from detailed functional studies and comprehensive omics analyses, it is now possible to start painting the landscape of the molecular background behind stress response and adaptation in Y. lipolytica. This review summarizes the current state-of-art of a global effort in revealing how Y. lipolytica responds to both environmental threats and the intrinsic burden caused by the overproduction of recombinant secretory proteins at the molecular level. Detailed lists of genes, proteins, molecules, and biological processes deregulated upon exposure to external stress factors or affected by over-synthesis of heterologous proteins are provided. Specificities and universalities of Y. lipolytica cellular response to different extrinsic and intrinsic threats are highlighted. Key points • Y. lipolytica as an industrial workhorse is subjected to multiple stress factors. • Cellular responses together with involved genes, proteins, and molecules are reviewed. • Native stress response mechanisms are studied and inspire engineering strategies.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland.
| |
Collapse
|
46
|
Elucidation of physico-chemical principles of high-density lipoprotein-small RNA binding interactions. J Biol Chem 2022; 298:101952. [PMID: 35447119 PMCID: PMC9133651 DOI: 10.1016/j.jbc.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022] Open
Abstract
Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.
Collapse
|
47
|
Trachman RJ, Passalacqua LFM, Ferré-D'Amaré AR. The bacterial yjdF riboswitch regulates translation through its tRNA-like fold. J Biol Chem 2022; 298:101934. [PMID: 35427649 PMCID: PMC9142559 DOI: 10.1016/j.jbc.2022.101934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 10/27/2022] Open
Abstract
Unlike most riboswitches, which have one cognate effector, the bacterial yjdF riboswitch binds to diverse azaaromatic compounds, only a subset of which cause it to activate translation. We examined the yjdF aptamer domain by small-angle X-ray scattering, and found that in the presence of activating ligands, the RNA adopts an overall shape similar to that of tRNA. Sequence analyses suggested that the yjdF aptamer is a homolog of tRNALys, and that two of the conserved loops of the riboswitch are equivalent to the D- and T-loops of tRNA, associating to form an elbow-like tertiary interaction. Chemical probing indicated that this association is promoted by activating ligands such as chelerythrine and harmine. In its native mRNA context, activator ligands stabilize the tRNA-like fold of the yjdF aptamer, outcompeting the attenuated state in which its T-loop base-pairs to the Shine-Dalgarno element of the mRNA. Moreover, we demonstrate that the liganded aptamer itself activates translation, as authentic tRNAs, when grafted into mRNA, can potently activate translation. Taken together, our data demonstrate the ability of tRNA to function as a small-molecule responsive cis regulatory element.
Collapse
Affiliation(s)
- Robert J Trachman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA.
| | - Luiz F M Passalacqua
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, 50 South Drive MSC 8012, Bethesda, MD 20892-8012, USA
| |
Collapse
|
48
|
Soelter TM, Whitlock JH, Williams AS, Hardigan AA, Lasseigne BN. Nucleic acid liquid biopsies in Alzheimer's disease: current state, challenges, and opportunities. Heliyon 2022; 8:e09239. [PMID: 35469332 PMCID: PMC9034064 DOI: 10.1016/j.heliyon.2022.e09239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and affects persons of all races, ethnic groups, and sexes. The disease is characterized by neuronal loss leading to cognitive decline and memory loss. There is no cure and the effectiveness of existing treatments is limited and depends on the time of diagnosis. The long prodromal period, during which patients' ability to live a normal life is not affected despite neuronal loss, often leads to a delayed diagnosis because it can be mistaken for normal aging of the brain. In order to make a substantial impact on AD patient survival, early diagnosis may provide a greater therapeutic window for future therapies to slow AD-associated neurodegeneration. Current gold standards for disease detection include magnetic resonance imaging and positron emission tomography scans, which visualize amyloid β and phosphorylated tau depositions and aggregates. Liquid biopsies, already an active field of research in precision oncology, are hypothesized to provide early disease detection through minimally or non-invasive sample collection techniques. Liquid biopsies in AD have been studied in cerebrospinal fluid, blood, ocular, oral, and olfactory fluids. However, most of the focus has been on blood and cerebrospinal fluid due to biomarker specificity and sensitivity attributed to the effects of the blood-brain barrier and inter-laboratory variation during sample collection. Many studies have identified amyloid β and phosphorylated tau levels as putative biomarkers, however, advances in next-generation sequencing-based liquid biopsy methods have led to significant interest in identifying nucleic acid species associated with AD from liquid tissues. Differences in cell-free RNAs and DNAs have been described as potential biomarkers for AD and hold the potential to affect disease diagnosis, treatment, and future research avenues.
Collapse
Affiliation(s)
- Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Avery S. Williams
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| | - Andrew A. Hardigan
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, The University of Alabama at Birmingham, AL, USA
| |
Collapse
|
49
|
Luo K, Li S, Zheng Z, Lai X, Ju M, Li C, Wan X. tsRNAs及其对植物响应非生物胁迫时基因表达的调控. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Xu Y, Zou H, Ding Q, Zou Y, Tang C, Lu Y, Xu X. tiRNA-Val promotes angiogenesis via Sirt1–Hif-1α axis in mice with diabetic retinopathy. Biol Res 2022; 55:14. [PMID: 35346383 PMCID: PMC8962541 DOI: 10.1186/s40659-022-00381-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 02/22/2022] [Indexed: 11/27/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a specific microvascular complication arising from diabetes, and its pathogenesis is not completely understood. tRNA-derived stress-induced RNAs (tiRNAs), a new type of small noncoding RNA generated by specific cleavage of tRNAs, has become a promising target for several diseases. However, the regulatory function of tiRNAs in DR and its detailed mechanism remain unknown. Results Here, we analyzed the tiRNA profiles of normal and DR retinal tissues. The expression level of tiRNA-Val was significantly upregulated in DR retinal tissues. Consistently, tiRNA-Val was upregulated in human retinal microvascular endothelial cells (HRMECs) under high glucose conditions. The overexpression of tiRNA-Val enhanced cell proliferation and inhibited cell apoptosis in HRMECs, but the knockdown of tiRNA-Val decreased cell proliferation and promoted cell apoptosis. Mechanistically, tiRNA-Val, derived from mature tRNA-Val with Ang cleavage, decreased Sirt1 expression level by interacting with sirt1 3'UTR, leading to the accumulation of Hif-1α, a key target for DR. In addition, subretinal injection of adeno-associated virus to knock down tiRNA-Val in DR mice ameliorated the symptoms of DR. Conclusion tiRNA-Val enhance cell proliferation and inhibited cell apoptosis via Sirt1/Hif-1α pathway in HRMECs of DR retinal tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00381-7.
Collapse
|