1
|
Gilea AI, Magistrati M, Notaroberto I, Tiso N, Dallabona C, Baruffini E. The Saccharomyces cerevisiae mitochondrial DNA polymerase and its contribution to the knowledge about human POLG-related disorders. IUBMB Life 2023; 75:983-1002. [PMID: 37470284 DOI: 10.1002/iub.2770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023]
Abstract
Most eukaryotes possess a mitochondrial genome, called mtDNA. In animals and fungi, the replication of mtDNA is entrusted by the DNA polymerase γ, or Pol γ. The yeast Pol γ is composed only of a catalytic subunit encoded by MIP1. In humans, Pol γ is a heterotrimer composed of a catalytic subunit homolog to Mip1, encoded by POLG, and two accessory subunits. In the last 25 years, more than 300 pathological mutations in POLG have been identified as the cause of several mitochondrial diseases, called POLG-related disorders, which are characterized by multiple mtDNA deletions and/or depletion in affected tissues. In this review, at first, we summarize the biochemical properties of yeast Mip1, and how mutations, especially those introduced recently in the N-terminal and C-terminal regions of the enzyme, affect the in vitro activity of the enzyme and the in vivo phenotype connected to the mtDNA stability and to the mtDNA extended and point mutability. Then, we focus on the use of yeast harboring Mip1 mutations equivalent to the human ones to confirm their pathogenicity, identify the phenotypic defects caused by these mutations, and find both mechanisms and molecular compounds able to rescue the detrimental phenotype. A closing chapter will be dedicated to other polymerases found in yeast mitochondria, namely Pol ζ, Rev1 and Pol η, and to their genetic interactions with Mip1 necessary to maintain mtDNA stability and to avoid the accumulation of spontaneous or induced point mutations.
Collapse
Affiliation(s)
- Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Ilenia Notaroberto
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Padova, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
2
|
Magistrati M, Gilea AI, Gerra MC, Baruffini E, Dallabona C. Drug Drop Test: How to Quickly Identify Potential Therapeutic Compounds for Mitochondrial Diseases Using Yeast Saccharomyces cerevisiae. Int J Mol Sci 2023; 24:10696. [PMID: 37445873 DOI: 10.3390/ijms241310696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Mitochondrial diseases (MDs) refer to a group of clinically and genetically heterogeneous pathologies characterized by defective mitochondrial function and energy production. Unfortunately, there is no effective treatment for most MDs, and current therapeutic management is limited to relieving symptoms. The yeast Saccharomyces cerevisiae has been efficiently used as a model organism to study mitochondria-related disorders thanks to its easy manipulation and well-known mitochondrial biogenesis and metabolism. It has been successfully exploited both to validate alleged pathogenic variants identified in patients and to discover potential beneficial molecules for their treatment. The so-called "drug drop test", a phenotype-based high-throughput screening, especially if coupled with a drug repurposing approach, allows the identification of molecules with high translational potential in a cost-effective and time-saving manner. In addition to drug identification, S. cerevisiae can be used to point out the drug's target or pathway. To date, drug drop tests have been successfully carried out for a variety of disease models, leading to very promising results. The most relevant aspect is that studies on more complex model organisms confirmed the effectiveness of the drugs, strengthening the results obtained in yeast and demonstrating the usefulness of this screening as a novel approach to revealing new therapeutic molecules for MDs.
Collapse
Affiliation(s)
- Martina Magistrati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alexandru Ionut Gilea
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| |
Collapse
|
3
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
4
|
Stenberg S, Li J, Gjuvsland AB, Persson K, Demitz-Helin E, González Peña C, Yue JX, Gilchrist C, Ärengård T, Ghiaci P, Larsson-Berglund L, Zackrisson M, Smits S, Hallin J, Höög JL, Molin M, Liti G, Omholt SW, Warringer J. Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation. eLife 2022; 11:e76095. [PMID: 35801695 PMCID: PMC9427111 DOI: 10.7554/elife.76095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
Collapse
Affiliation(s)
- Simon Stenberg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Arne B Gjuvsland
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Erik Demitz-Helin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Carles González Peña
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Ciaran Gilchrist
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Timmy Ärengård
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Lisa Larsson-Berglund
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Silvana Smits
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johan Hallin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Stig W Omholt
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| |
Collapse
|
5
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
6
|
Transient Mitochondria Dysfunction Confers Fungal Cross-Resistance against Phagocytic Killing and Fluconazole. mBio 2021; 12:e0112821. [PMID: 34061590 PMCID: PMC8262853 DOI: 10.1128/mbio.01128-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Loss or inactivation of antivirulence genes is an adaptive strategy in pathogen evolution. Candida glabrata is an important opportunistic pathogen related to baker’s yeast, with the ability to both quickly increase its intrinsic high level of azole resistance and persist within phagocytes. During C. glabrata’s evolution as a pathogen, the mitochondrial DNA polymerase CgMip1 has been under positive selection. We show that CgMIP1 deletion not only triggers loss of mitochondrial function and a petite phenotype, but increases C. glabrata’s azole and endoplasmic reticulum (ER) stress resistance and, importantly, its survival in phagocytes. The same phenotype is induced by fluconazole and by exposure to macrophages, conferring a cross-resistance between antifungals and immune cells, and can be found in clinical isolates despite a slow growth of petite strains. This suggests that petite constitutes a bet-hedging strategy of C. glabrata and, potentially, a relevant cause of azole resistance. Mitochondrial function may therefore be considered a potential antivirulence factor.
Collapse
|
7
|
Ceccatelli Berti C, di Punzio G, Dallabona C, Baruffini E, Goffrini P, Lodi T, Donnini C. The Power of Yeast in Modelling Human Nuclear Mutations Associated with Mitochondrial Diseases. Genes (Basel) 2021; 12:300. [PMID: 33672627 PMCID: PMC7924180 DOI: 10.3390/genes12020300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
The increasing application of next generation sequencing approaches to the analysis of human exome and whole genome data has enabled the identification of novel variants and new genes involved in mitochondrial diseases. The ability of surviving in the absence of oxidative phosphorylation (OXPHOS) and mitochondrial genome makes the yeast Saccharomyces cerevisiae an excellent model system for investigating the role of these new variants in mitochondrial-related conditions and dissecting the molecular mechanisms associated with these diseases. The aim of this review was to highlight the main advantages offered by this model for the study of mitochondrial diseases, from the validation and characterisation of novel mutations to the dissection of the role played by genes in mitochondrial functionality and the discovery of potential therapeutic molecules. The review also provides a summary of the main contributions to the understanding of mitochondrial diseases emerged from the study of this simple eukaryotic organism.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy; (C.C.B.); (G.d.P.); (C.D.); (E.B.); (P.G.); (T.L.)
| |
Collapse
|
8
|
Young MJ, Imperial RJ, Lakhi S, Court DA. A non-radioactive DNA synthesis assay demonstrates that elements of the Sigma 1278b Mip1 mitochondrial DNA polymerase domain and C-terminal extension facilitate robust enzyme activity. Yeast 2021; 38:262-275. [PMID: 33270277 DOI: 10.1002/yea.3541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 11/06/2022] Open
Abstract
The yeast DNA polymerase gamma, Mip1, is a useful tool to investigate the impact of orthologous human disease variants on mitochondrial DNA (mtDNA) replication. However, Mip1 is characterized by a C-terminal extension (CTE) that is not found on orthologous metazoan DNA polymerases, and the CTE is required for robust enzymatic activity. Two MIP1 alleles exist in standard yeast strains, encoding Mip1[S] or Mip1[Σ]. Mip1[S] is associated with reduced mtDNA stability and increased error rates in vivo. Although the Mip1[S] allele was initially identified in S288c, the Mip1[Σ] allele is widely present among available yeast genome sequences, suggesting that it is the wild-type (WT) allele. We developed a novel non-radioactive polymerase gamma assay to assess Mip1 functioning at its intracellular location, the mitochondrial membrane. Membrane fractions were isolated from yeast cells expressing full-length or CTE truncation variants of Mip1[S] or a chimeric Mip1[S] isoform harboring the Mip1[Σ]-specific T661 residue (cMip1 T661). Relative incorporation of digoxigenin (DIG)-11-deoxyuridine monophosphate (DIG-dUMP) by cMip1 T661 was higher than that by Mip1[S]. A cMip1 T661variant lacking 175 C-terminal residues maintained WT levels of DIG-dUMP incorporation, whereas the C-terminal variant lacking 205 residues displayed a significant decrease in incorporation. Newly synthesized DIG-labeled DNA decreased during later phases of reactions carried out at 37°C, suggesting temperature-sensitive destabilization of the polymerase domain and/or increased shuttling of the nascent DNA into the exonuclease domain. Comparative analysis of Mip1 enzyme functions using our novel assay has further demonstrated the importance of the CTE and T661 encoded by MIP1[Σ] in yeast mtDNA replication.
Collapse
Affiliation(s)
- Matthew J Young
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Biochemistry and Molecular Biology, School of Medicine, Southern Illinois University, Carbondale, Illinois, USA
| | - Robin J Imperial
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Truman Medical Center, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Suman Lakhi
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.,Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Deborah A Court
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
9
|
Efficient clofilium tosylate-mediated rescue of POLG-related disease phenotypes in zebrafish. Cell Death Dis 2021; 12:100. [PMID: 33469036 PMCID: PMC7815880 DOI: 10.1038/s41419-020-03359-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 12/08/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.
Collapse
|
10
|
Rzepnikowska W, Kaminska J, Kabzińska D, Binięda K, Kochański A. A Yeast-Based Model for Hereditary Motor and Sensory Neuropathies: A Simple System for Complex, Heterogeneous Diseases. Int J Mol Sci 2020; 21:ijms21124277. [PMID: 32560077 PMCID: PMC7352270 DOI: 10.3390/ijms21124277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult and, even when using the most advanced tools, does not guarantee that the cause of the disease will be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely diverse and are probably different for most of the disease subtypes. Finally, there is no possibility of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT needs an individual approach backed up by its own research field. Thus, it is little surprise that our knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages and disadvantages of yeast as a model system in which to study CMT diseases. We show how this single-cell organism may be used to discriminate between pathogenic variants, to uncover the mechanism of pathogenesis, and to discover new therapies for CMT disease.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Dagmara Kabzińska
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Katarzyna Binięda
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Centre Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.R.); (D.K.); (K.B.)
- Correspondence:
| |
Collapse
|
11
|
Hoyos-Gonzalez N, Trasviña-Arenas CH, Degiorgi A, Castro-Lara AY, Peralta-Castro A, Jimenez-Sandoval P, Diaz-Quezada C, Lodi T, Baruffini E, Brieba LG. Modeling of pathogenic variants of mitochondrial DNA polymerase: insight into the replication defects and implication for human disease. Biochim Biophys Acta Gen Subj 2020; 1864:129608. [PMID: 32234506 DOI: 10.1016/j.bbagen.2020.129608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/07/2020] [Accepted: 03/25/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Mutations in human gene encoding the mitochondrial DNA polymerase γ (HsPolγ) are associated with a broad range of mitochondrial diseases. Here we studied the impact on DNA replication by disease variants clustered around residue HsPolγ-K1191, a residue that in several family-A DNA polymerases interacts with the 3' end of the primer. METHODS Specifically, we examined the effect of HsPolγ carrying pathogenic variants in residues D1184, I1185, C1188, K1191, D1196, and a stop codon at residue T1199, using as a model the yeast mitochondrial DNA polymerase protein, Mip1p. RESULTS The introduction of pathogenic variants C1188R (yV945R), and of a stop codon at residue T1199 (yT956X) abolished both polymerization and exonucleolysis in vitro. HsPolγ substitutions in residues D1184 (yD941), I1185 (yI942), K1191 (yK948) and D1196 (yD953) shifted the balance between polymerization and exonucleolysis in favor of exonucleolysis. HsPolγ pathogenic variants at residue K1191 (yK948) and D1184 (yD941) were capable of nucleotide incorporation albeit with reduced processivity. Structural analysis of mitochondrial DNAPs showed that residue HsPolγ-N864 is placed in an optimal distance to interact with the 3' end of the primer and the phosphate backbone previous to the 3' end. Amino acid changes in residue HsPolγ-N864 to Ala, Ser or Asp result in enzymes that did not decrease their polymerization activity on short templates but exhibited a substantial decrease for processive DNA synthesis. CONCLUSION Our data suggest that in mitochondrial DNA polymerases multiple amino acids are involved in the primer-stand stabilization.
Collapse
Affiliation(s)
- Nallely Hoyos-Gonzalez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Carlos H Trasviña-Arenas
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Andrea Degiorgi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atzimaba Y Castro-Lara
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Antolín Peralta-Castro
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Corina Diaz-Quezada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico
| | - Tiziana Lodi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Apartado Postal 629, CP 36821 Irapuato, Guanajuato, Mexico.
| |
Collapse
|
12
|
Amino and carboxy-terminal extensions of yeast mitochondrial DNA polymerase assemble both the polymerization and exonuclease active sites. Mitochondrion 2019; 49:166-177. [PMID: 31445096 DOI: 10.1016/j.mito.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/11/2019] [Accepted: 08/19/2019] [Indexed: 11/24/2022]
Abstract
Human and yeast mitochondrial DNA polymerases (DNAPs), POLG and Mip1, are related by evolution to bacteriophage DNAPs. However, mitochondrial DNAPs contain unique amino and carboxyl-terminal extensions that physically interact. Here we describe that N-terminal deletions in Mip1 polymerases abolish polymerization and decrease exonucleolytic degradation, whereas moderate C-terminal deletions reduce polymerization. Similarly, to the N-terminal deletions, an extended C-terminal deletion of 298 amino acids is deficient in nucleotide addition and exonucleolytic degradation of double and single-stranded DNA. The latter observation suggests that the physical interaction between the amino and carboxyl-terminal regions of Mip1 may be related to the spread of pathogenic POLG mutant along its primary sequence.
Collapse
|
13
|
Cui R, Medeiros T, Willemsen D, Iasi LN, Collier GE, Graef M, Reichard M, Valenzano DR. Relaxed Selection Limits Lifespan by Increasing Mutation Load. Cell 2019; 178:385-399.e20. [DOI: 10.1016/j.cell.2019.06.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/18/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023]
|
14
|
Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in Saccharomyces cerevisiae. Genetics 2018; 211:773-786. [PMID: 30498022 DOI: 10.1534/genetics.118.301546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial genome variation and its effects on phenotypes have been widely analyzed in higher eukaryotes but less so in the model eukaryote Saccharomyces cerevisiae Here, we describe mitochondrial genome variation in 96 diverse S. cerevisiae strains and assess associations between mitochondrial genotype and phenotypes as well as nuclear-mitochondrial epistasis. We associate sensitivity to the ATP synthase inhibitor oligomycin with SNPs in the mitochondrially encoded ATP6 gene. We describe the use of iso-nuclear F1 pairs, the mitochondrial genome equivalent of reciprocal hemizygosity analysis, to identify and analyze mitochondrial genotype-dependent phenotypes. Using iso-nuclear F1 pairs, we analyze the oligomycin phenotype-ATP6 association and find extensive nuclear-mitochondrial epistasis. Similarly, in iso-nuclear F1 pairs, we identify many additional mitochondrial genotype-dependent respiration phenotypes, for which there was no association in the 96 strains, and again find extensive nuclear-mitochondrial epistasis that likely contributes to the lack of association in the 96 strains. Finally, in iso-nuclear F1 pairs, we identify novel mitochondrial genotype-dependent nonrespiration phenotypes: resistance to cycloheximide, ketoconazole, and copper. We discuss potential mechanisms and the implications of mitochondrial genotype and of nuclear-mitochondrial epistasis effects on respiratory and nonrespiratory quantitative traits.
Collapse
|
15
|
Gilberti M, Baruffini E, Donnini C, Dallabona C. Pathological alleles of MPV17 modeled in the yeast Saccharomyces cerevisiae orthologous gene SYM1 reveal their inability to take part in a high molecular weight complex. PLoS One 2018; 13:e0205014. [PMID: 30273399 PMCID: PMC6166979 DOI: 10.1371/journal.pone.0205014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 09/18/2018] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial DNA depletion syndromes (MDDS) are a genetically and clinically heterogeneous group of human diseases caused by mutations in nuclear genes and characterized by a severe reduction in mitochondrial DNA (mtDNA) copy number leading to impaired energy production in affected tissues and organs. Mutations in the MPV17 gene, whose role is still elusive, were described as cause of the hepatocerebral form of MDDS and Navajo neuro-hepathopathy. The high degree of conservation observed between MPV17 and its yeast homolog SYM1 made the latter a good model for the study of the pathology. Here, we used Saccharomyces cerevisiae to elucidate the molecular consequences of seven MPV17 missense mutations identified in patients and localized in different protein domains. The phenotypic analysis of the appropriate sym1 mutant strains created demonstrated deleterious effect for all mutations regarding OXPHOS metabolism and mtDNA stability. We deepened the pathogenic effect of the mutations by investigating whether they prevented the correct protein localization into the mitochondria or affected the stability of the proteins. All the Sym1 mutant proteins correctly localized into the mitochondria and only one mutation predominantly affects protein stability. All the other mutations compromised the formation of the high molecular weight complex of unknown composition, previously identified both in yeast, cell cultures and mouse tissues, as demonstrated by the consistent fraction of the Sym1 mutant proteins found free or in not fully assembled complex, strengthening its role as protein forming part of a high molecular weight complex.
Collapse
Affiliation(s)
- Micol Gilberti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Enrico Baruffini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Claudia Donnini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- * E-mail:
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| |
Collapse
|
16
|
Tervasmäki A, Mantere T, Hartikainen JM, Kauppila S, Lee HM, Koivuluoma S, Grip M, Karihtala P, Jukkola-Vuorinen A, Mannermaa A, Winqvist R, Pylkäs K. Rare missense mutations in RECQL and POLG associate with inherited predisposition to breast cancer. Int J Cancer 2018; 142:2286-2292. [PMID: 29341116 DOI: 10.1002/ijc.31259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/20/2017] [Accepted: 01/02/2018] [Indexed: 12/13/2022]
Abstract
Several known breast cancer susceptibility genes with moderate-to-high risk alleles encode proteins involved in DNA damage response (DDR). As these explain less than half of the hereditary breast cancer cases, additional predisposing alleles are likely to be discovered. Many of the previous studies utilizing massive parallel sequencing have focused on the protein-truncating variants, and the role of rare missense mutations has remained poorly addressed. To identify novel susceptibility factors, we have systematically analyzed the data from our parallel sequencing of 796 DDR genes in 189 Northern Finnish hereditary breast cancer patients for rare missense variants, predicted as deleterious. Thirty-five variants were studied here for the disease association using Finnish breast cancer case (n = 492-2,035) and control (n = 277-1,539) cohorts. As a result, two missense variants in genes involved in DNA replication, RECQL p.I156M and POLG p.L392V, the former involving genomic and the latter mitochondrial DNA replication, showed significant association with risk of breast cancer. Rare RECQL p.I156M allele was observed in breast cancer cases only (6/1,946, 0.3%, p = 0.043), whereas POLG p.L392V was two times more frequent in breast cancer cases (53/2,238, 2.4%) compared to controls (18/1,539, 1.2%, OR = 2.1, 95% CI 1.2-3.5, p = 0.010). Based on the current genetic data, both RECQL p.I156M and POLG p.L392V represent novel breast cancer predisposing alleles.
Collapse
Affiliation(s)
- Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Hang-Mao Lee
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Susanna Koivuluoma
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Peeter Karihtala
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology and Radiotherapy, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arto Mannermaa
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Pathology, Imaging Center, Kuopio University Hospital, Kuopio, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre Nordlab Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
17
|
De Luise M, Girolimetti G, Okere B, Porcelli AM, Kurelac I, Gasparre G. Molecular and metabolic features of oncocytomas: Seeking the blueprints of indolent cancers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:591-601. [DOI: 10.1016/j.bbabio.2017.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/28/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
|
18
|
Nasca A, Legati A, Baruffini E, Nolli C, Moroni I, Ardissone A, Goffrini P, Ghezzi D. Biallelic Mutations in DNM1L are Associated with a Slowly Progressive Infantile Encephalopathy. Hum Mutat 2016; 37:898-903. [PMID: 27328748 PMCID: PMC5108486 DOI: 10.1002/humu.23033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/07/2016] [Indexed: 11/25/2022]
Abstract
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion, and mitochondrial dynamics is important for several cellular functions. DNM1L is the most important mediator of mitochondrial fission, with a role also in peroxisome division. Few reports of patients with genetic defects in DNM1L have been published, most of them describing de novo dominant mutations. We identified compound heterozygous DNM1L variants in two brothers presenting with an infantile slowly progressive neurological impairment. One variant was a frame‐shift mutation, the other was a missense change, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. In conclusion, we described a recessive disease caused by DNM1L mutations, with a clinical phenotype resembling mitochondrial disorders but without any biochemical features typical of these syndromes (lactic acidosis, respiratory chain complex deficiency) or indicating a peroxisomal disorder.
Collapse
Affiliation(s)
- Alessia Nasca
- Unit of Molecular Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Andrea Legati
- Unit of Molecular Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | | | - Cecilia Nolli
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Anna Ardissone
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Paola Goffrini
- Department of Life Sciences, University of Parma, Parma, Italy
| | - Daniele Ghezzi
- Unit of Molecular Neurogenetics, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| |
Collapse
|
19
|
Pitayu L, Baruffini E, Rodier C, Rötig A, Lodi T, Delahodde A. Combined use of Saccharomyces cerevisiae, Caenorhabditis elegans and patient fibroblasts leads to the identification of clofilium tosylate as a potential therapeutic chemical against POLG-related diseases. Hum Mol Genet 2015; 25:715-27. [PMID: 26692522 DOI: 10.1093/hmg/ddv509] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/08/2015] [Indexed: 11/13/2022] Open
Abstract
Mitochondria are organelles that have their own DNA (mitochondrial DNA, mtDNA) whose maintenance is necessary for the majority of ATP production in eukaryotic cells. Defects in mtDNA maintenance or integrity are responsible for numerous diseases. The DNA polymerase γ (POLG) ensures proper mtDNA replication and repair. Mutations in POLG are a major cause of mitochondrial disorders including hepatic insufficiency, Alpers syndrome, progressive external ophthalmoplegia, sensory neuropathy and ataxia. Mutations in POLG are also associated with parkinsonism. To date, no effective therapy is available. Based on the conservation of mitochondrial function from yeast to human, we used Saccharomyces cerevisiae and Caenorhabditis elegans as first pass filters to identify a chemical that suppresses mtDNA instability in cultured fibroblasts of a POLG-deficient patient. We showed that this unsuspected compound, clofilium tosylate (CLO), belonging to a class of anti-arrhythmic agents, prevents mtDNA loss of all yeast mitochondrial polymerase mutants tested, improves behavior and mtDNA content of polg-1-deficient worms and increases mtDNA content of quiescent POLG-deficient fibroblasts. Furthermore, the mode of action of the drug seems conserved as CLO increases POLG steady-state level in yeast and human cells. Two other anti-arrhythmic agents (FDA-approved) sharing common pharmacological properties and chemical structure also show potential benefit for POLG deficiency in C. elegans. Our findings provide evidence of the first mtDNA-stabilizing compound that may be an effective pharmacological alternative for the treatment of POLG-related diseases.
Collapse
Affiliation(s)
- Laras Pitayu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Enrico Baruffini
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/a, I-43124 Parma, Italy and
| | - Celine Rodier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Agnès Rötig
- INSERM UMR 1163, Laboratory of Genetics of Mitochondrial Disorders, Paris Descartes - Sorbonne Paris Cité University, Imagine Institute, 24 Boulevard du Montparnasse, Paris 75015, France
| | - Tiziana Lodi
- Department of Life Sciences, University of Parma, Parco Area delle Scienze 11/a, I-43124 Parma, Italy and
| | - Agnès Delahodde
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France,
| |
Collapse
|
20
|
Yeast model analysis of novel polymerase gamma variants found in patients with autosomal recessive mitochondrial disease. Hum Genet 2015; 134:951-66. [PMID: 26077851 PMCID: PMC4529462 DOI: 10.1007/s00439-015-1578-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/03/2015] [Indexed: 12/18/2022]
Abstract
Replication of the mitochondrial genome depends on the single DNA polymerase (pol gamma). Mutations in the POLG gene, encoding the catalytic subunit of the human polymerase gamma, have been linked to a wide variety of mitochondrial disorders that show remarkable heterogeneity, with more than 200 sequence variants, often very rare, found in patients. The pathogenicity and dominance status of many such mutations remain, however, unclear. Remarkable structural and functional conservation of human POLG and its S. cerevisiae ortholog (Mip1p) led to the development of many successful yeast models, enabling to study the phenotype of putative pathogenic mutations. In a group of patients with suspicion of mitochondrial pathology, we identified five novel POLG sequence variants, four of which (p.Arg869Ter, p.Gln968Glu, p.Thr1053Argfs*6, and p.Val1106Ala), together with one previously known but uncharacterised variant (p.Arg309Cys), were amenable to modelling in yeast. Familial analysis indicated causal relationship of these variants with disease, consistent with autosomal recessive inheritance. To investigate the effect of these sequence changes on mtDNA replication, we obtained the corresponding yeast mip1 alleles (Arg265Cys, Arg672Ter, Arg770Glu, Thr809Ter, and Val863Ala, respectively) and tested their effect on mitochondrial genome stability and replication fidelity. For three of them (Arg265Cys, Arg672Ter, and Thr809Ter), we observed a strong, partially dominant phenotype of a complete loss of functional mtDNA, whereas the remaining two led to partial mtDNA depletion and significant increase in point mutation frequencies. These results show good correlation with the severity of symptoms observed in patients and allow to establish these variants as pathogenic mutations.
Collapse
|