1
|
Santana PDPB, Pinheiro KDC, Pereira LCDS, Andrade SS, Aburjaile FF, Ramos PDCDA, de Souza EB, da Costa NN, Cordeiro MDS, Santos SDSD, Miranda MDS, Ramos RTJ, da Silva ALDC. RNA sequencing and gene co-expression network of in vitro matured oocytes and blastocysts of buffalo. Anim Reprod 2024; 21:e20230131. [PMID: 38912163 PMCID: PMC11192227 DOI: 10.1590/1984-3143-ar2023-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/24/2024] [Indexed: 06/25/2024] Open
Abstract
In reproductive technologies, uncovering the molecular aspects of oocyte and embryo competence under different conditions is crucial for refining protocols and enhancing efficiency. RNA-seq generates high-throughput data and provides transcriptomes that can undergo additional computational analyses. This study presented the transcriptomic profiles of in vitro matured oocytes and blastocysts produced in vitro from buffalo crossbred (Bubalus bubalis), coupled with gene co-expression and module preservation analysis. Cumulus Oophorus Complexes, obtained from slaughterhouse-derived ovaries, were subjected to in vitro maturation to yield metaphase II oocytes (616) or followed in vitro fertilization and culture to yield blastocysts for sequencing (526). Oocyte maturation (72%, ±3.34 sd) and embryo development (21.3%, ±4.18 sd) rates were obtained from three in vitro embryo production routines following standard protocols. Sequencing of 410 metaphase II oocytes and 70 hatched blastocysts (grade 1 and 2) identified a total of 13,976 genes, with 62% being ubiquitously expressed (8,649). Among them, the differentially expressed genes (4,153) and the strongly variable genes with the higher expression (fold-change above 11) were highlighted in oocytes (BMP15, UCHL1, WEE1, NLRPs, KPNA7, ZP2, and ZP4) and blastocysts (APOA1, KRT18, ANXA2, S100A14, SLC34A2, PRSS8 and ANXA2) as representative indicators of molecular quality. Additionally, genes exclusively found in oocytes (224) and blastocysts (2,200) with specific biological functions were identified. Gene co-expression network and module preservation analysis revealed strong preservation of functional modules related to exosome components, steroid metabolism, cell proliferation, and morphogenesis. However, cell cycle and amino acid transport modules exhibited weak preservation, which may reflect differences in embryo development kinetics and the activation of cell signaling pathways between buffalo and bovine. This comprehensive transcriptomic profile serves as a valuable resource for assessing the molecular quality of buffalo oocytes and embryos in future in vitro embryo production assays.
Collapse
Affiliation(s)
| | | | | | - Soraya Silva Andrade
- Laboratório de Genômica e Bioinformática, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Eduardo Baia de Souza
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | - Nathalia Nogueira da Costa
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | | - Moysés dos Santos Miranda
- Laboratório de Fertilização In Vitro, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brasil
| | | | | |
Collapse
|
2
|
Izadpanah M, Yalameha B, Sani MZ, Cheragh PK, Mahdipour M, Rezabakhsh A, Rahbarghazi R. Exosomes as Theranostic Agents in Reproduction System. Adv Biol (Weinh) 2024; 8:e2300258. [PMID: 37955866 DOI: 10.1002/adbi.202300258] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/06/2023] [Indexed: 11/14/2023]
Abstract
Exosomes (Exos), belonging to extracellular vesicles, are cell-derived nano-sized vesicles with the potential to carry different kinds of biological molecules. Many studies have proved the impacts of exosomal cargo on several biological processes in female and male reproductive systems. It is also hypothesized that changes in exosomal cargo are integral to the promotion of certain pathological conditions, thus Exos can be used as valid biomarkers for the diagnosis of infertility and other abnormal conditions. Here, efforts are made to collect some recent data related to the physiological significance of Exos in the reproductive system, and their potential therapeutic effects. It is anticipated that the current review article will lay the groundwork for elucidating the source and mechanisms by which Exos control the reproductive system additionally supplying fresh methods and concepts for the detection and treatment of disorders associated with fertility for future studies.
Collapse
Affiliation(s)
- Melika Izadpanah
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Banafsheh Yalameha
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Zamani Sani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aysa Rezabakhsh
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Saadeldin IM, Ehab S, Swelum AA. Potential roles of extracellular vesicles as a noninvasive tool for prenatal genetic diagnosis. F&S SCIENCE 2023; 4:36-43. [PMID: 36736894 DOI: 10.1016/j.xfss.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
The rate of infertility is increasing owing to genetic and environmental factors. Consequently, assisted reproductive technology has been introduced as an alternative. Bearing in mind the global trend toward the transfer of only one embryo, there is an increasing trend for assessing embryo quality before transfer through prenatal genetic diagnosis (PGD) tests. This ensures that the best-quality embryos are implanted into the uterus. In the in vitro fertilization cycle, PGD is not only used for diseases or quality checks before embryo freezing but also for evaluating unfortunate risks, such as aneuploidy, signs of early abortions, and preterm birth. However, traditional preimplantation genetic testing and screening approaches are invasive and harm the health of both the mother and embryo, raising the risk of miscarriage. In the last decade, embryonic extracellular vesicles (EVs) have been investigated and have emerged as a promising diagnostic tool. In this mini-review, we address the use of EVs as a noninvasive biomarker in PGD to test for biological hazards within the embryo without invading its cells. We summarize the state-of-the-art in the use of the embryo's EV content, genomic DNA, messenger RNA, and microRNA in the spent culture medium and their relationship with embryo quality, successful implantation, and pregnancy.
Collapse
Affiliation(s)
- Islam M Saadeldin
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Research Institute of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Seif Ehab
- Biomedical Sciences Program, Zewail City of Science and Technology, University of Science and Technology, Giza, Egypt; Zoology Graduate Program, Department of Zoology, Faculty of Science, Cairo University, Giza, Egypt
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
4
|
Comprehensive Analysis of circRNA-Mediated ceRNA Regulatory Networks in relation to Recurrent Implantation Failure. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8314838. [PMID: 36051495 PMCID: PMC9427240 DOI: 10.1155/2022/8314838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
Recurrent implantation failure (RIF) is attributed to endometrial receptivity dysfunction with many unanswered questions. Up to now, there is no explanation for RIF, and therapeutic strategies are usually limited to supportive care. In this study, we differentially analyzed the raw data deposited in three eligible microarray datasets, GSE111974, GSE121219, and GSE147442 to screen DE-mRNAs, DE-miRNAs, and DE-circRNAs, respectively. The value of log2-fold change |log2FC| ≥ 1 and the adjusted p value < 0.05 were considered differentially expressed between RIF and fertile control. We found 350 DE-mRNAs, 43 DE-miRNAs, and 1968 DE-circRNAs between RIF and fertile control. The PPI network identified 6 hub genes with degree ≥10, KDR, AGT, POSTN, TOP2A, RRM2, and PTGS2, in RIF. KDR, AGT, POSTN, TOP2A, and RRM2 were downregulated in endometrial tissue samples of RIF compared with those of fertile control, while PTGS2 was upregulated in endometrial tissue samples of RIF compared with those of fertile control. According to the ceRNA hypothesis, 15 groups of ceRNA network based on 10 circRNAs, hsa_circ_001572, hsa_circ_001884, hsa_circ_001375, hsa_circ_001449, hsa_circ_000029, hsa_circ_001168, hsa_circ_000210, hsa_circ_001484, hsa_circ_001698, and hsa_circ_000089 were constructed in RIF. In conclusion, the present study examined the possible role of circRNAs and their related ceRNA network involved in the pathogenesis of RIF.
Collapse
|
5
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
6
|
Pavani KC, Meese T, Pascottini OB, Guan X, Lin X, Peelman L, Hamacher J, Van Nieuwerburgh F, Deforce D, Boel A, Heindryckx B, Tilleman K, Van Soom A, Gadella BM, Hendrix A, Smits K. Hatching is modulated by microRNA-378a-3p derived from extracellular vesicles secreted by blastocysts. Proc Natl Acad Sci U S A 2022; 119:e2122708119. [PMID: 35298333 PMCID: PMC8944274 DOI: 10.1073/pnas.2122708119] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.
Collapse
Affiliation(s)
- Krishna Chaitanya Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Tim Meese
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Osvaldo Bogado Pascottini
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
- Department of Veterinary Sciences, Gamete Research Center, University of Antwerp, 2610 Antwerp, Belgium
| | - XueFeng Guan
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, B-9000 Ghent, Belgium
| | - Joachim Hamacher
- Institute of Crop Science and Resource Conservation, Plant Pathology, Rheinische Friedrich-Wilhelms-University of Bonn, D-53115 Bonn, Germany
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Dieter Deforce
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, B-9000 Ghent, Belgium
| | - Annekatrien Boel
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Björn Heindryckx
- Ghent-Fertility and Stem Cell Team, Department for Reproductive Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Kelly Tilleman
- Department for Reproductive Medicine, Ghent University Hospital, 9000 Gent, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| | - Bart M. Gadella
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, B-9000 Ghent, Belgium
- Cancer Research Institute Ghent, B-9000 Ghent, Belgium
| | - Katrien Smits
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, B-9820 Merelbeke, Belgium
| |
Collapse
|
7
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
8
|
Fang F, Li Z, Yu J, Long Y, Zhao Q, Ding X, Wu L, Shao S, Zhang L, Xiang W. MicroRNAs secreted by human embryos could be potential biomarkers for clinical outcomes of assisted reproductive technology. J Adv Res 2021; 31:25-34. [PMID: 34194830 PMCID: PMC8240345 DOI: 10.1016/j.jare.2021.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/27/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction MicroRNAs (miRNAs) are important regulators of many biological functions, including embryo implantation and development. Recently, it has been reported that miRNAs in biofluids are predictive for physiological and pathological processes. Objectives In this study, we aim to investigate whether the miRNAs secreted by human embryos in culture medium can be used as embryonic biomarkers. Methods The culture media were prospectively collected from embryos of patients at reproductive medicine center with informed consent. A high-throughput miRNA sequencing method was applied to detect the miRNA profiles in the human embryo culture media. After bioinformatics analysis and screening of differentially expressed miRNAs, quantitative real-time polymerase chain reaction (qRT-PCR) assay was subsequently performed to further confirm the sequencing results with mixed samples. Furthermore, we performed droplet digital PCR (ddPCR) to verify the target miRNAs at single sample level. Receiver operating characteristic (ROC) analyses were performed for differentially expressed miRNAs. Results Compared with embryos with failed pregnancy, the embryos with successful pregnancy secreted different miRNA profiles into the culture media, which were predicted to be involved in multiple biological processes. Validated by droplet digital polymerase chain reaction (ddPCR), the expression of hsa-miR-26b-5p and hsa-miR-21-5p in the culture media of cleavage embryos with successful pregnancy was significantly lower than that of embryos with failed pregnancy. Moreover, the Receiver Operating Characteristic (ROC) curve analysis indicated that hsa-miR-26b-5p and hsa-miR-21-5p could serve as potential biomarkers for reproductive outcomes. Conclusion Together, our findings highlight the important predictive potential of miRNAs secreted by human embryos in culture media, which is meaningful for non-invasive embryo selection in assisted reproductive technology.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Jiangyu Yu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Yuting Long
- Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Qian Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China
| | - Xiaofang Ding
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Li Wu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Shumin Shao
- Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Ling Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, China.,Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan 430013, China
| |
Collapse
|
9
|
de Ávila ACFCM, Andrade GM, Bridi A, Gimenes LU, Meirelles FV, Perecin F, da Silveira JC. Extracellular vesicles and its advances in female reproduction. Anim Reprod 2020; 16:31-38. [PMID: 33299476 PMCID: PMC7721021 DOI: 10.21451/1984-3143-ar2018-00101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Intercellular communication is an essential mechanism for development and maintenance of multicellular organisms. Extracellular vesicles (EVs) were recently described as new players in the intercellular communication. EVs are double-membrane vesicles secreted by cells and are classified according to their biosynthesis, protein markers and morphology. These extracellular vesicles contain bioactive materials such as miRNA, mRNA, protein and lipids. These characteristics permit their involvement in different biological processes. Reproductive physiology is complex and involves constant communication between cells. Different laboratories have described the presence of EVs secreted by ovarian follicular cells, oviductal cells, in vitro produced embryos and by the endometrium, suggesting that EVs are involved in the development of gametes and embryos, in animals and humans. Therefore, is important to understand physiological mechanisms and contributions of EVs in female reproduction in order to develop new tools to improve in vivo reproductive events and assisted reproductive techniques (ARTs). This review will provide the current knowledge related to EVs in female reproductive tissues and their role in ARTs.
Collapse
Affiliation(s)
| | - Gabriella Mamede Andrade
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Alessandra Bridi
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Lindsay Unno Gimenes
- Department of Preventive Veterinary Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (Unesp), Jaboticabal, SP, Brazil
| | - Flávio Vieira Meirelles
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliano Coelho da Silveira
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
10
|
MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome. Fertil Steril 2020; 113:970-980.e2. [PMID: 32222254 DOI: 10.1016/j.fertnstert.2019.12.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/29/2019] [Accepted: 12/14/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To identify differentially abundant miRNAs in sperm samples and spent culture media (SCM) of embryos of different grade toward a prediction of pregnancy outcome. DESIGN Array-based reverse-transcription quantitative polymerase chain reaction profiling and validation. SETTING University research institute and in vitro fertilization center. PATIENT(S) Couples (n = 61) undergoing infertility treatment with the use of intracytoplasmic sperm injection. INTERVENTIONS(S) None. MAIN OUTCOME MEASURE(S) Abundance levels of miRNAs in combined SCM of embryos of different quality and in sperm samples associated with pregnancy outcome. RESULT(S) Out of 372 screened miRNAs, miR-19b-3p and let-7a-5p were detected consistently in all SCM and sperm samples. The abundance levels of miRNAs were significantly altered between SCM of embryos with different quality (G1, G2, and G3 grades). Specifically, miR-320a and miR-15a-5p were differentially abundant in G1 vs. G2, miR-21-5p in G1 vs. G3, and miR-20a-5p in G2 vs. G3. The abundance levels of combined SCM and sperm derived miRNAs were also significantly altered between different pregnancy outcomes. MiR-19b-3p showed the highest area under the receiver operating characteristic curve values between positive and negative outcomes, with lower abundance levels in both combined SCM and sperm samples associated with a positive pregnancy outcome. MiR-320a, miR-15a-5p, miR-21-5p, and miR-20a-5p showed similar results in combined SCM samples. CONCLUSION(S) miRNA abundance levels in combined SCM and sperm differed significantly depending on embryo quality and pregnancy outcome. MiR-19b-3p may serve as a potential biomarker to predict pregnancy outcome.
Collapse
|
11
|
Russell SJ, Menezes K, Balakier H, Librach C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Syst Biol Reprod Med 2020; 66:129-139. [PMID: 32053759 DOI: 10.1080/19396368.2020.1716108] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Embryo implantation depends on two primary factors: the quality of the embryo and endometrial receptivity. Small RNAs have been shown to be potent epigenetic regulators influencing cell proliferation, differentiation, and communication even in the context of early embryonic development. However, previous reports are limited to miRNAs and lack sensitivity. Here, we describe a platform for non-invasive small RNA biomarker discovery and validation from embryo-conditioned culture media (ECCM). We hypothesize that small non-coding RNAs (sncRNAs) are secreted by the embryo into the ECCM and test the limit of detection for profiling sncRNA by deep sequencing and quantitative PCR. In the first set of experiments, we evaluated sequencing sensitivity by comparing sncRNA profiles from pools of 10, 5, 3, and single ECCM drops. Next, we performed a similar test for TaqMan qPCR sensitivity by measuring select sncRNAs in 5, 3 and single drop ECCM pools. Finally, we compared the expression of an sncRNA panel by qPCR in single ECCM vs no-embryo control media . We report the first comprehensive sequencing of sncRNAs in ECCM with a sequencing sensitivity of 3 single embryo drops, capturing ~150 miRNAs and an abundance of tRNA-derived small RNAs (tsRNAs). We then profiled 15 sncRNAs by qPCR and determined that the assay maintains sensitivity in single ECCM drops. Finally, we found significant differences in these sncRNA expression between control and ECCM drops. Improving embryo selection is crucial for reducing time to pregnancy. Here we describe a sensitive technique for biomarker discovery by sequencing and qPCR validation in ECCM, demonstrating that the majority of sncRNAs are embryo derived. We also report an abundance of tsRNAs which suggests these sncRNAs may have functions in endometrial-maternal communication beyond the microRNAs which have been described previously.Abbreviations: PGT-A: Preimplantation genetic testing for aneuploidies; ECCM: Embryo-conditioned culture media; sncRNAs: Small non-coding RNAs; miRNAs: microRNAs; EVs: Extracellular vesicles; PCA: Principal component analysis.
Collapse
Affiliation(s)
| | | | | | - Clifford Librach
- Create Fertility Centre, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, Women's College Hospital, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Review: Recent advances in bovine in vitro embryo production: reproductive biotechnology history and methods. Animal 2019; 14:991-1004. [PMID: 31760966 DOI: 10.1017/s1751731119002775] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In vitro production (IVP) of embryos and associated technologies in cattle have shown significant progress in recent years, in part driven by a better understanding of the full potential of these tools by end users. The combination of IVP with sexed semen (SS) and genomic selection (GS) is being successfully and widely used in North America, South America and Europe. The main advantages offered by these technologies include a higher number of embryos and pregnancies per unit of time, and a wider range of potential female donors from which to retrieve oocytes (including open cyclic females and ones up to 3 months pregnant), including high index genomic calves, a reduced number of sperm required to produce embryos and increased chances of obtaining the desired sex of offspring. However, there are still unresolved aspects of IVP of embryos that limit a wider implementation of the technology, including potentially reduced fertility from the use of SS, reduced oocyte quality after in vitro oocyte maturation and lower embryo cryotolerance, resulting in reduced pregnancy rates compared to in vivo-produced embryos. Nevertheless, promising research results have been reported, and work is in progress to address current deficiencies. The combination of GS, IVP and SS has proven successful in the commercial field in several countries assisting practitioners and cattle producers to improve reproductive performance, efficiency and genetic gain.
Collapse
|
13
|
Santana PDPB, da Silva ALDC, Ramos RTJ, Gonçalves AA, da Costa NN, Ramos PDCA, Silva TVG, Cordeiro MDS, Santos SDSD, Ohashi OM, Miranda MDS. Contributions of RNA-seq to improve in vitro embryo production (IVP). Anim Reprod 2019; 16:249-259. [PMID: 33224284 PMCID: PMC7673591 DOI: 10.21451/1984-3143-ar2017-0043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In Vitro Embryo Production (IVP) is widely used to improve the reproductive efficiency of livestock animals, however increasing the embryo development rates and pregnancy outcomes is still a challenge for some species. Thus, the lack of biological knowledge hinders developing specie-specific IVP protocols. Therefore, the contributions of RNA-seq to generate relevant biological knowledge and improve the efficiency of IVP in livestock animals are reviewed herein.
Collapse
Affiliation(s)
| | | | | | - Arnaldo Algaranhar Gonçalves
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Nathalia Nogueira da Costa
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | | | | | - Marcela da Silva Cordeiro
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | | | - Otávio Mitio Ohashi
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| | - Moysés Dos Santos Miranda
- Laboratory of In Vitro Fertilization, Institute of Biological Science, Federal University of Pará, Belém, PA, Brazil
| |
Collapse
|
14
|
Cavalera F, Simovic M, Zanoni M, Merico V, Garagna S, Zuccotti M. IVM of mouse fully grown germinal vesicle oocytes upon a feeder layer of selected cumulus cells enhances their developmental competence. Reprod Fertil Dev 2019; 31:1068-1077. [PMID: 30922442 DOI: 10.1071/rd18444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
In the ovary, acquisition of oocyte developmental competence depends on a bidirectional exchange between the gamete and its companion cumulus cells (CCs). In this study we investigated the contribution of CCs surrounding oocytes of known developmental competence or incompetence to the acquisition of oocyte developmental competence. To this end, feeder layers of CCs (FL-CCs) were prepared using CCs isolated either from: (1) developmentally competent mouse oocytes whose nucleolus was surrounded by a chromatin ring (FL-SN-CCs); or (2) developmentally incompetent mouse oocytes whose nucleolus was not surrounded by a chromatin ring (FL-NSN-CCs). Denuded, fully grown oocytes (DOs) were matured to the MII stage on either FL-SN-CCs or FL-NSN-CCs, inseminated with spermatozoa and cultured throughout preimplantation development. FL-SN-CCs significantly improved the acquisition of oocyte developmental competence, with a blastocyst development rate equal to that for maturation of intact cumulus-oocyte-complexes. In contrast, DOs matured on FL-NSN-CCs or in the absence of CCs exhibited developmental failure, with embryos arresting at either the 4-cell or morula stage. These results set a culture platform to further improve the protocols for the maturation of DOs and to unravel the molecules involved in the cross-talk between the gamete and its companion CCs during the germinal vesicle to MII transition.
Collapse
Affiliation(s)
- Federica Cavalera
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Milena Simovic
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy; and German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Mario Zanoni
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Valeria Merico
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy
| | - Silvia Garagna
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy; and Corresponding authors. ;
| | - Maurizio Zuccotti
- Laboratorio di Biologia dello Sviluppo, Dipartimento di Biologia e Biotecnologie 'Lazzaro Spallanzani', University of Pavia, Via Ferrata, 9, 27100 Pavia, Italy; and Corresponding authors. ;
| |
Collapse
|
15
|
Khatib H, Gross N. Symposium review: Embryo survival-A genomic perspective of the other side of fertility. J Dairy Sci 2018; 102:3744-3753. [PMID: 30293848 DOI: 10.3168/jds.2018-15252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/31/2018] [Indexed: 01/13/2023]
Abstract
The majority of embryonic loss in cattle occurs within the first 3 to 4 wk of pregnancy, and there are currently no accurate predictors of pregnancy outcome. Existing embryo quality assessment methods include morphological evaluation and embryo biopsy. These methods are not accurate and carry some health risks to the developing embryo, respectively. Therefore, there is need to identify noninvasive biomarkers such as microRNA that can predict embryo quality and pregnancy outcome. Furthermore, researchers need a better understanding of the dynamic interaction between the mother and the embryo. The transcriptome of the uterus shows plasticity that depends on the embryo type so that the expression level of some genes for in vivo embryos would be different from that of in vitro-produced embryos. Similarly, the embryonic transcriptome and epigenome change in response to different environmental factors such as stress, diet, disease, and physiological status of the mother. This embryo-mother crosstalk could be better understood by investigating the molecular signaling that occurs at different stages of embryonic development. Although transcriptomics is a useful tool to assess the roles of genes and pathways in embryo quality and maternal receptivity, it does not provide the exact functions of these genes, and it shows correlation rather than causality. Therefore, an in-depth functional genomic analysis is needed for better understanding of the molecular mechanisms controlling embryo development. In this review, we discuss recent genomic technologies such as RNA interference, gapmer technology, and genome editing techniques used in humans and livestock to elucidate the molecular mechanisms of genes affecting embryo development.
Collapse
Affiliation(s)
- H Khatib
- Department of Animal Sciences, University of Wisconsin, Madison 53706.
| | - N Gross
- Department of Animal Sciences, University of Wisconsin, Madison 53706
| |
Collapse
|
16
|
Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing In Vitro Fertilization. Sci Rep 2017; 7:13525. [PMID: 29051527 PMCID: PMC5648749 DOI: 10.1038/s41598-017-13683-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are class of small RNA molecules with major impact on gene regulation. We analyzed the potential of miRNAs secreted from pre-implantation embryos into the embryonic culture media as biomarkers to predict successful pregnancy. Using microarray analysis, we profiled the miRNome of the 56 spent culture media (SCM) after embryos transfer and found a total of 621 miRNAs in the SCM. On average, we detected 163 miRNAs in SCM of samples with failed pregnancies, but only 149 SCM miRNAs of embryos leading to pregnancies. MiR-634 predicted an embryo transfer leading to a positive pregnancy with an accuracy of 71% and a sensitivity of 85%. Among the 621 miRNAs, 102 (16.4%) showed a differential expression between positive and negative outcome of pregnancy with miR-29c-3p as the most significantly differentially expressed miRNA. The number of extracellular vehicles was lower in SCM with positive outcomes (3.8 × 109/mL EVs), as compared to a negative outcome (7.35 × 109/mL EVs) possibly explaining the reduced number of miRNAs in the SCM associated with failed pregnancies. The analysis of the miRNome in the SCM of couples undergoing fertility treatment lays the ground towards development of biomarkers to predict successful pregnancy and towards understanding the role of embryonic miRNAs found in the SCM.
Collapse
|
17
|
Pavani KC, Alminana C, Wydooghe E, Catteeuw M, Ramírez MA, Mermillod P, Rizos D, Van Soom A. Emerging role of extracellular vesicles in communication of preimplantation embryos in vitro. Reprod Fertil Dev 2017; 29:66-83. [PMID: 28278795 DOI: 10.1071/rd16318] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In vitro, efficient communication between mammalian embryos in groups or between embryos and cocultured somatic cells implies that there is a sender, a message and a receiver that is able to decode the message. Embryos secrete a variety of autocrine and paracrine factors and, of these, extracellular vesicles have recently been implicated as putative messengers in embryo-embryo communication, as well as in communication of the embryo with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles that are found in biofluids and in culture media conditioned by the presence of embryos or cells. EVs carry and transfer regulatory molecules, such as microRNAs, mRNAs, lipids and proteins. We conducted a systematic search of the literature to review and present the currently available evidence regarding the possible roles of EVs in in vitro embryo communication and embryo development. It is important to note that there is limited information available on the molecular mechanisms and many of the biologically plausible functions of EVs in embryo communication have not yet been substantiated by conclusive experimental evidence. However, indirect evidence, such as the use of media conditioned by embryos or by somatic cells with improved embryo development as a result, may indicate that EVs can be an important asset for the development of tailor-made media, allowing better embryo development in vitro, even for single embryo culture.
Collapse
Affiliation(s)
- Krishna C Pavani
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Carmen Alminana
- INRA, Reproductive Physiology and Behavior, UMR085, INRA, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Eline Wydooghe
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Maaike Catteeuw
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| | - Miguel A Ramírez
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Pascal Mermillod
- INRA, Reproductive Physiology and Behavior, UMR085, INRA, CNRS, Université de Tours, IFCE, 37380 Nouzilly, France
| | - Dimitrios Rizos
- Departamento de Reproduccion Animal, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Madrid 28040, Spain
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, University of Ghent, Salisburylaan 133, B-9820 Merelbeke, Belgium
| |
Collapse
|