1
|
Chamberlin SR, Blucher A, Wu G, Shinto L, Choonoo G, Kulesz-Martin M, McWeeney S. Natural Product Target Network Reveals Potential for Cancer Combination Therapies. Front Pharmacol 2019; 10:557. [PMID: 31214023 PMCID: PMC6555193 DOI: 10.3389/fphar.2019.00557] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/03/2019] [Indexed: 12/20/2022] Open
Abstract
A body of research demonstrates examples of in vitro and in vivo synergy between natural products and anti-neoplastic drugs for some cancers. However, the underlying biological mechanisms are still elusive. To better understand biological entities targeted by natural products and therefore provide rational evidence for future novel combination therapies for cancer treatment, we assess the targetable space of natural products using public domain compound-target information. When considering pathways from the Reactome database targeted by natural products, we found an increase in coverage of 61% (725 pathways), relative to pathways covered by FDA approved cancer drugs collected in the Cancer Targetome, a resource for evidence-based drug-target interactions. Not only is the coverage of pathways targeted by compounds increased when we include natural products, but coverage of targets within those pathways is also increased. Furthermore, we examined the distribution of cancer driver genes across pathways to assess relevance of natural products to critical cancer therapeutic space. We found 24 pathways enriched for cancer drivers that had no available cancer drug interactions at a potentially clinically relevant binding affinity threshold of < 100nM that had at least one natural product interaction at that same binding threshold. Assessment of network context highlighted the fact that natural products show target family groupings both distinct from and in common with cancer drugs, strengthening the complementary potential for natural products in the cancer therapeutic space. In conclusion, our study provides a foundation for developing novel cancer treatment with the combination of drugs and natural products.
Collapse
Affiliation(s)
- Steven R Chamberlin
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, United States
| | - Aurora Blucher
- OHSU Knight Cancer Institute, Portland, OR, United States
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, United States.,OHSU Knight Cancer Institute, Portland, OR, United States.,Oregon Clinical and Translational Research Institute, Portland, OR, United States
| | - Lynne Shinto
- Department of Neurology, Oregon Health and Science University, Portland, OR, United States
| | - Gabrielle Choonoo
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, United States.,OHSU Knight Cancer Institute, Portland, OR, United States
| | - Molly Kulesz-Martin
- OHSU Knight Cancer Institute, Portland, OR, United States.,Departments of Dermatology and Cell, Developmental and Cancer Biology, Oregon Health and Sciences University, Portland, OR, United States
| | - Shannon McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Portland, OR, United States.,OHSU Knight Cancer Institute, Portland, OR, United States.,Oregon Clinical and Translational Research Institute, Portland, OR, United States
| |
Collapse
|
2
|
Mucaki EJ, Zhao JZL, Lizotte DJ, Rogan PK. Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning. Signal Transduct Target Ther 2019. [PMID: 30652029 DOI: 10.1038/s41392-018-0034-5]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature using data from patients with cancer. Supervised support vector machine learning is used to derive gene sets whose expression is related to the cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme and median GI50 thresholds. Ensembles of gene signatures at different thresholds are combined to reduce the dependence on specific GI50 values for predicting drug responses. The most accurate gene signatures for each platin are: cisplatin: BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, and TWIST1; carboplatin: AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, VEGFB, and VEGFC; and oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, and UGT1A1. Data from The Cancer Genome Atlas (TCGA) patients with bladder, ovarian, and colorectal cancer were used to test the cisplatin, carboplatin, and oxaliplatin signatures, resulting in 71.0%, 60.2%, and 54.5% accuracies in predicting disease recurrence and 59%, 61%, and 72% accuracies in predicting remission, respectively. One cisplatin signature predicted 100% of recurrence in non-smoking patients with bladder cancer (57% disease-free; N = 19), and 79% recurrence in smokers (62% disease-free; N = 35). This approach should be adaptable to other studies of chemotherapy responses, regardless of the drug or cancer types.
Collapse
Affiliation(s)
- Eliseos J Mucaki
- 1Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 2C1 Canada
| | - Jonathan Z L Zhao
- 1Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 2C1 Canada.,2Department of Computer Science, Faculty of Science, Western University, London, ON N6A 2C1 Canada
| | - Daniel J Lizotte
- 2Department of Computer Science, Faculty of Science, Western University, London, ON N6A 2C1 Canada.,3Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 2C1 Canada
| | - Peter K Rogan
- 1Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 2C1 Canada.,2Department of Computer Science, Faculty of Science, Western University, London, ON N6A 2C1 Canada.,3Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 2C1 Canada.,Cytognomix, Inc., London, ON N5X 3X5 Canada.,5Department of Oncology, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 2C1 Canada
| |
Collapse
|
3
|
Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning. Signal Transduct Target Ther 2019. [PMID: 30652029 DOI: 10.1038/s41392-018-0034-5] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature using data from patients with cancer. Supervised support vector machine learning is used to derive gene sets whose expression is related to the cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme and median GI50 thresholds. Ensembles of gene signatures at different thresholds are combined to reduce the dependence on specific GI50 values for predicting drug responses. The most accurate gene signatures for each platin are: cisplatin: BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, and TWIST1; carboplatin: AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, VEGFB, and VEGFC; and oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, and UGT1A1. Data from The Cancer Genome Atlas (TCGA) patients with bladder, ovarian, and colorectal cancer were used to test the cisplatin, carboplatin, and oxaliplatin signatures, resulting in 71.0%, 60.2%, and 54.5% accuracies in predicting disease recurrence and 59%, 61%, and 72% accuracies in predicting remission, respectively. One cisplatin signature predicted 100% of recurrence in non-smoking patients with bladder cancer (57% disease-free; N = 19), and 79% recurrence in smokers (62% disease-free; N = 35). This approach should be adaptable to other studies of chemotherapy responses, regardless of the drug or cancer types.
Collapse
|
4
|
Predicting responses to platin chemotherapy agents with biochemically-inspired machine learning. Signal Transduct Target Ther 2019; 4:1. [PMID: 30652029 PMCID: PMC6329797 DOI: 10.1038/s41392-018-0034-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/04/2018] [Indexed: 02/07/2023] Open
Abstract
The selection of effective genes that accurately predict chemotherapy responses might improve cancer outcomes. We compare optimized gene signatures for cisplatin, carboplatin, and oxaliplatin responses in the same cell lines and validate each signature using data from patients with cancer. Supervised support vector machine learning is used to derive gene sets whose expression is related to the cell line GI50 values by backwards feature selection with cross-validation. Specific genes and functional pathways distinguishing sensitive from resistant cell lines are identified by contrasting signatures obtained at extreme and median GI50 thresholds. Ensembles of gene signatures at different thresholds are combined to reduce the dependence on specific GI50 values for predicting drug responses. The most accurate gene signatures for each platin are: cisplatin: BARD1, BCL2, BCL2L1, CDKN2C, FAAP24, FEN1, MAP3K1, MAPK13, MAPK3, NFKB1, NFKB2, SLC22A5, SLC31A2, TLR4, and TWIST1; carboplatin: AKT1, EIF3K, ERCC1, GNGT1, GSR, MTHFR, NEDD4L, NLRP1, NRAS, RAF1, SGK1, TIGD1, TP53, VEGFB, and VEGFC; and oxaliplatin: BRAF, FCGR2A, IGF1, MSH2, NAGK, NFE2L2, NQO1, PANK3, SLC47A1, SLCO1B1, and UGT1A1. Data from The Cancer Genome Atlas (TCGA) patients with bladder, ovarian, and colorectal cancer were used to test the cisplatin, carboplatin, and oxaliplatin signatures, resulting in 71.0%, 60.2%, and 54.5% accuracies in predicting disease recurrence and 59%, 61%, and 72% accuracies in predicting remission, respectively. One cisplatin signature predicted 100% of recurrence in non-smoking patients with bladder cancer (57% disease-free; N = 19), and 79% recurrence in smokers (62% disease-free; N = 35). This approach should be adaptable to other studies of chemotherapy responses, regardless of the drug or cancer types. Machine learning has identified genetic signatures that predict how patients will respond to three of the most widely used cancer drugs. Chemotherapy regimens are usually based on how groups of people with similar cancers respond to them, but genetic differences can render the drugs more or less effective in individual patients. Machine learning provides a way of sifting through large amounts of data to identify patterns—in this case, in gene signatures associated with cancer recurrence and remission. The authors investigated cellular responses to cisplatin, carboplatin, and oxaliplatin and identified signatures in 11–15 genes which were the most predictive for each drug. The compositions of these signatures are also tailored to how well these therapies prevent growth of cancer cells. Accuracy varied, but one cisplatin signature was able to predict all instances of disease recurrence in non-smokers with bladder cancer.
Collapse
|
5
|
Webber JT, Kaushik S, Bandyopadhyay S. Integration of Tumor Genomic Data with Cell Lines Using Multi-dimensional Network Modules Improves Cancer Pharmacogenomics. Cell Syst 2018; 7:526-536.e6. [PMID: 30414925 DOI: 10.1016/j.cels.2018.10.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 08/01/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
Leveraging insights from genomic studies of patient tumors is limited by the discordance between these tumors and the cell line models used for functional studies. We integrate omics datasets using functional networks to identify gene modules reflecting variation between tumors and show that the structure of these modules can be evaluated in cell lines to discover clinically relevant biomarkers of therapeutic responses. Applied to breast cancer, we identify 219 gene modules that capture recurrent alterations and subtype patients and quantitate various cell types within the tumor microenvironment. Comparison of modules between tumors and cell lines reveals that many modules composed primarily of gene expression and methylation are poorly preserved. In contrast, preserved modules are highly predictive of drug responses in a manner that is robust and clinically relevant. This work addresses a fundamental challenge in pharmacogenomics that can only be overcome by the joint analysis of patient and cell line data.
Collapse
Affiliation(s)
- James T Webber
- Department of Bioengineering and Therapeutic Sciences, Institute for Computational Health Sciences, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Swati Kaushik
- Department of Bioengineering and Therapeutic Sciences, Institute for Computational Health Sciences, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, Institute for Computational Health Sciences, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|