1
|
Segatto NV, Simões LD, Bender CB, Sousa FS, Oliveira TL, Paschoal JDF, Pacheco BS, Lopes I, Seixas FK, Qazi A, Thomas FM, Chaki S, Robertson N, Newsom J, Patel S, Rund LA, Jordan LR, Bolt C, Schachtschneider KM, Schook LB, Collares TV. Oncopig bladder cancer cells recapitulate human bladder cancer treatment responses in vitro. Front Oncol 2024; 14:1323422. [PMID: 38469237 PMCID: PMC10926022 DOI: 10.3389/fonc.2024.1323422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/05/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Bladder cancer is a common neoplasia of the urinary tract that holds the highest cost of lifelong treatment per patient, highlighting the need for a continuous search for new therapies for the disease. Current bladder cancer models are either imperfect in their ability to translate results to clinical practice (mouse models), or rare and not inducible (canine models). Swine models are an attractive alternative to model the disease due to their similarities with humans on several levels. The Oncopig Cancer Model has been shown to develop tumors that closely resemble human tumors. However, urothelial carcinoma has not yet been studied in this platform. Methods We aimed to develop novel Oncopig bladder cancer cell line (BCCL) and investigate whether these urothelial swine cells mimic human bladder cancer cell line (5637 and T24) treatment-responses to cisplatin, doxorubicin, and gemcitabine in vitro. Results Results demonstrated consistent treatment responses between Oncopig and human cells in most concentrations tested (p>0.05). Overall, Oncopig cells were more predictive of T24 than 5637 cell therapeutic responses. Microarray analysis also demonstrated similar alterations in expression of apoptotic (GADD45B and TP53INP1) and cytoskeleton-related genes (ZMYM6 and RND1) following gemcitabine exposure between 5637 (human) and Oncopig BCCL cells, indicating apoptosis may be triggered through similar signaling pathways. Molecular docking results indicated that swine and humans had similar Dg values between the chemotherapeutics and their target proteins. Discussion Taken together, these results suggest the Oncopig could be an attractive animal to model urothelial carcinoma due to similarities in in vitro therapeutic responses compared to human cells.
Collapse
Affiliation(s)
- Natália V. Segatto
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Lucas D. Simões
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Camila B. Bender
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda S. Sousa
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Thais L. Oliveira
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Júlia D. F. Paschoal
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Bruna S. Pacheco
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Isadora Lopes
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana K. Seixas
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Aisha Qazi
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Faith M. Thomas
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | | | | | - Shovik Patel
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Luke R. Jordan
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | | | - Lawrence B. Schook
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
- Sus Clinicals Inc., Chicago, IL, United States
| | - Tiago V. Collares
- Technology Development Center, Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Mondal P, Bailey KL, Cartwright SB, Band V, Carlson MA. Large Animal Models of Breast Cancer. Front Oncol 2022; 12:788038. [PMID: 35186735 PMCID: PMC8855936 DOI: 10.3389/fonc.2022.788038] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/18/2022] [Indexed: 01/29/2023] Open
Abstract
In this mini review the status, advantages, and disadvantages of large animal modeling of breast cancer (BC) will be discussed. While most older studies of large animal BC models utilized canine and feline subjects, more recently there has been interest in development of porcine BC models, with some early promising results for modeling human disease. Widely used rodent models of BC were briefly reviewed to give context to the work on the large animal BC models. Availability of large animal BC models could provide additional tools for BC research, including availability of human-sized subjects and BC models with greater biologic relevance.
Collapse
Affiliation(s)
- Pinaki Mondal
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States,Department of Surgery, VA Medical Center, Omaha, NE, United States
| | - Katie L. Bailey
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sara B. Cartwright
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
| | - Mark A. Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States,Department of Surgery, VA Medical Center, Omaha, NE, United States,Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, United States,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States,Center for Advanced Surgical Technology, University of Nebraska Medical Center, Omaha, NE, United States,*Correspondence: Mark A. Carlson,
| |
Collapse
|
3
|
Segatto NV, Bender CB, Seixas FK, Schachtschneider K, Schook L, Robertson N, Qazi A, Carlino M, Jordan L, Bolt C, Collares T. Perspective: Humanized Pig Models of Bladder Cancer. Front Mol Biosci 2021; 8:681044. [PMID: 34079821 PMCID: PMC8165235 DOI: 10.3389/fmolb.2021.681044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/28/2021] [Indexed: 12/09/2022] Open
Abstract
Bladder cancer (BC) is the 10th most common neoplasia worldwide and holds expensive treatment costs due to its high recurrence rates, resistance to therapy and the need for lifelong surveillance. Thus, it is necessary to improve the current therapy options and identify more effective treatments for BC. Biological models capable of recapitulating the characteristics of human BC pathology are essential in evaluating the effectiveness of new therapies. Currently, the most commonly used BC models are experimentally induced murine models and spontaneous canine models, which are either insufficient due to their small size and inability to translate results to clinical basis (murine models) or rarely spontaneously observed BC (canine models). Pigs represent a potentially useful animal for the development of personalized tumors due to their size, anatomy, physiology, metabolism, immunity, and genetics similar to humans and the ability to experimentally induce tumors. Pigs have emerged as suitable biomedical models for several human diseases. In this sense, the present perspective focuses on the genetic basis for BC; presents current BC animal models available along with their limitations; and proposes the pig as an adequate animal to develop humanized large animal models of BC. Genetic alterations commonly found in human BC can be explored to create genetically defined porcine models, including the BC driver mutations observed in the FGFR3, PIK3CA, PTEN, RB1, HRAS, and TP53 genes. The development of such robust models for BC has great value in the study of pathology and the screening of new therapeutic and diagnostic approaches to the disease.
Collapse
Affiliation(s)
- Natália Vieira Segatto
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Camila Bonemann Bender
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Fabiana Kommling Seixas
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Kyle Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Lawrence Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | - Aisha Qazi
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Maximillian Carlino
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Luke Jordan
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Courtni Bolt
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Cancer Biotechnology Laboratory, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
4
|
|
5
|
Ye M, Misra SK, De AK, Ostadhossein F, Singh K, Rund L, Schook L, Pan D. Design, Synthesis, and Characterization of Globular Orphan Nuclear Receptor Regulator with Biological Activity in Soft Tissue Sarcoma. J Med Chem 2018; 61:10739-10752. [PMID: 30375864 DOI: 10.1021/acs.jmedchem.8b01387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Sarcomas are rare and heterogeneous cancer variants of mesenchymal origin. Their genetic heterogeneity coupled with uncertain histogenesis makes them difficult to treat and results in poor prognosis. In this work, we show that structure-based drug discovery involving computational modeling can be used to identify a new retinoid X receptor (RXR) agonist ligand with a bis(indolyl)methane scaffold. This agent co-self-assembles with an amphiphilic diblock copolymer resulting in nanoparticles (Nano-RXR) with excellent kinetic stability, which were evaluated for efficacy and safety in transformed sarcoma cells, 63-3 Cre and 141-10 Cre of pig origin, and in rodent xenograft models. Responses at gene and protein levels established the treatment approach as a highly effective RXR agonist across cell, rodent, and "Oncopig" models. Interestingly, Nano-RXR was not only able to modulate metabolic and transporter genes related to orphan nuclear receptors but also played a major role in modulating programmed cell death in sarcomas developed in Oncopigs.
Collapse
Affiliation(s)
- Mao Ye
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Santosh K Misra
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Arun K De
- Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Agricultural Animal Care and Use Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Fatemeh Ostadhossein
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Kuldeep Singh
- Veterinary Diagnostic Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Laurie Rund
- Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Agricultural Animal Care and Use Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Veterinary Diagnostic Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lawrence Schook
- Department of Animal Sciences , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Agricultural Animal Care and Use Program , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Veterinary Diagnostic Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Dipanjan Pan
- Department of Bioengineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Beckman Institute of Advanced Science and Technology , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Mills Breast Cancer Institute , Carle Foundation Hospital , 502 N. Busey , Urbana , Illinois 61801 , United States.,Department of Materials Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States.,Carle-Illinois College of Medicine , Urbana , Illinois 61801 , United States
| |
Collapse
|
6
|
Son YJ, Lee SE, Park YG, Jeong SG, Shin MY, Kim EY, Park SP. Fibroblast Growth Factor 10 Enhances the Developmental Efficiency of Somatic Cell Nuclear Transfer Embryos by Accelerating the Kinetics of Cleavage During In Vitro Maturation. Cell Reprogram 2018; 20:196-204. [DOI: 10.1089/cell.2017.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Yeo-Jin Son
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Seung-Eun Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Yun-Gwi Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Sang-Gi Jeong
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Min-Young Shin
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
- Mirae Cell Bio, Seoul, Korea
| | - Se-Pill Park
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju, Korea
- Stem Cell Research Center, Jeju National University, Jeju, Korea
- Mirae Cell Bio, Seoul, Korea
| |
Collapse
|
7
|
The future is now: cutting edge science and understanding toxicology. Cell Biol Toxicol 2018; 34:79-85. [DOI: 10.1007/s10565-018-9421-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022]
|
8
|
Segatto NV, Remião MH, Schachtschneider KM, Seixas FK, Schook LB, Collares T. The Oncopig Cancer Model as a Complementary Tool for Phenotypic Drug Discovery. Front Pharmacol 2017; 8:894. [PMID: 29259556 PMCID: PMC5723300 DOI: 10.3389/fphar.2017.00894] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/22/2017] [Indexed: 12/14/2022] Open
Abstract
The screening of potential therapeutic compounds using phenotypic drug discovery (PDD) is being embraced once again by researchers and pharmaceutical companies as an approach to enhance the development of new effective therapeutics. Before the genomics and molecular biology era and the consecutive emergence of targeted-drug discovery approaches, PDD was the most common platform used for drug discovery. PDD, also known as phenotypic screening, consists of screening potential compounds in either in vitro cellular or in vivo animal models to identify compounds resulting in a desirable phenotypic change. Using this approach, the biological targets of the compounds are not taken into consideration. Suitable animal models are crucial for the continued validation and discovery of new drugs, as compounds displaying promising results in phenotypic in vitro cell-based and in vivo small animal model screenings often fail in clinical trials. Indeed, this is mainly a result of differential anatomy, physiology, metabolism, immunology, and genetics between humans and currently used pre-clinical small animal models. In contrast, pigs are more predictive of therapeutic treatment outcomes in humans than rodents. In addition, pigs provide an ideal platform to study cancer due to their similarities with humans at the anatomical, physiological, metabolic, and genetic levels. Here we provide a mini-review on the reemergence of PDD in drug development, highlighting the potential of porcine cancer models for improving pre-clinical drug discovery and testing. We also present precision medicine based genetically defined swine cancer models developed to date and their potential as biomedical models.
Collapse
Affiliation(s)
- Natalia V. Segatto
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Mariana H. Remião
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | | | - Fabiana K. Seixas
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana–Champaign, Champaign, IL, United States
| | - Tiago Collares
- Biotechnology Graduate Program, Molecular and Cellular Oncology Research Group, Laboratory of Cancer Biotechnology, Technology Development Center, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
9
|
Schachtschneider KM, Schwind RM, Newson J, Kinachtchouk N, Rizko M, Mendoza-Elias N, Grippo P, Principe DR, Park A, Overgaard NH, Jungersen G, Garcia KD, Maker AV, Rund LA, Ozer H, Gaba RC, Schook LB. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front Oncol 2017; 7:190. [PMID: 28879168 PMCID: PMC5572387 DOI: 10.3389/fonc.2017.00190] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/10/2017] [Indexed: 12/20/2022] Open
Abstract
Despite an improved understanding of cancer molecular biology, immune landscapes, and advancements in cytotoxic, biologic, and immunologic anti-cancer therapeutics, cancer remains a leading cause of death worldwide. More than 8.2 million deaths were attributed to cancer in 2012, and it is anticipated that cancer incidence will continue to rise, with 19.3 million cases expected by 2025. The development and investigation of new diagnostic modalities and innovative therapeutic tools is critical for reducing the global cancer burden. Toward this end, transitional animal models serve a crucial role in bridging the gap between fundamental diagnostic and therapeutic discoveries and human clinical trials. Such animal models offer insights into all aspects of the basic science-clinical translational cancer research continuum (screening, detection, oncogenesis, tumor biology, immunogenicity, therapeutics, and outcomes). To date, however, cancer research progress has been markedly hampered by lack of a genotypically, anatomically, and physiologically relevant large animal model. Without progressive cancer models, discoveries are hindered and cures are improbable. Herein, we describe a transgenic porcine model—the Oncopig Cancer Model (OCM)—as a next-generation large animal platform for the study of hematologic and solid tumor oncology. With mutations in key tumor suppressor and oncogenes, TP53R167H and KRASG12D, the OCM recapitulates transcriptional hallmarks of human disease while also exhibiting clinically relevant histologic and genotypic tumor phenotypes. Moreover, as obesity rates increase across the global population, cancer patients commonly present clinically with multiple comorbid conditions. Due to the effects of these comorbidities on patient management, therapeutic strategies, and clinical outcomes, an ideal animal model should develop cancer on the background of representative comorbid conditions (tumor macro- and microenvironments). As observed in clinical practice, liver cirrhosis frequently precedes development of primary liver cancer or hepatocellular carcinoma. The OCM has the capacity to develop tumors in combination with such relevant comorbidities. Furthermore, studies on the tumor microenvironment demonstrate similarities between OCM and human cancer genomic landscapes. This review highlights the potential of this and other large animal platforms as transitional models to bridge the gap between basic research and clinical practice.
Collapse
Affiliation(s)
| | - Regina M Schwind
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | | | | | - Mark Rizko
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nasya Mendoza-Elias
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Paul Grippo
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Daniel R Principe
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Alex Park
- College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Nana H Overgaard
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gregers Jungersen
- Division of Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kelly D Garcia
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL, United States
| | - Ajay V Maker
- Department of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, United States
| | - Laurie A Rund
- Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| | - Howard Ozer
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States.,Department of Animal Sciences, University of Illinois, Urbana, IL, United States
| |
Collapse
|
10
|
Blaker CL, Clarke EC, Little CB. Using mouse models to investigate the pathophysiology, treatment, and prevention of post-traumatic osteoarthritis. J Orthop Res 2017; 35:424-439. [PMID: 27312470 DOI: 10.1002/jor.23343] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/14/2016] [Indexed: 02/04/2023]
Abstract
Post-traumatic osteoarthritis (PTOA) is defined by its development after joint injury. Factors contributing to the risk of PTOA occurring, the rate of progression, and degree of associated disability in any individual, remain incompletely understood. What constitutes an "OA-inducing injury" is not defined. In line with advances in the traumatic brain injury field, we propose the scope of PTOA-inducing injuries be expanded to include not only those causing immediate structural damage and instability (Type I), but also those without initial instability/damage from moderate (Type II) or minor (Type III) loading severity. A review of the literature revealed this full spectrum of potential PTOA subtypes can be modeled in mice, with 27 Type I, 6 Type II, and 4 Type III models identified. Despite limitations due to cartilage anatomy, joint size, and bio-fluid availability, mice offer advantages as preclinical models to study PTOA, particularly genetically modified strains. Histopathology was the most common disease outcome, cartilage more frequently studied than bone or synovium, and meniscus and ligaments rarely evaluated. Other methods used to examine PTOA included gene expression, protein analysis, and imaging. Despite the major issues reported by patients being pain and biomechanical dysfunction, these were the least commonly measured outcomes in mouse models. Informative correlations of simultaneously measured disease outcomes in individual animals, was rarely done in any mouse PTOA model. This review has identified knowledge gaps that need to be addressed to increase understanding and improve prevention and management of PTOA. Preclinical mouse models play a critical role in these endeavors. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:424-439, 2017.
Collapse
Affiliation(s)
- Carina L Blaker
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia.,Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory, Institute of Bone and Joint Research, Level 10, Kolling Institute B6, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, The Royal North Shore Hospital, St. Leonards, New South Wales, 2065, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Sydney Medical School Northern, University of Sydney, St. Leonards, New South Wales, 2065, Australia
| |
Collapse
|
11
|
Clinical potential of human-induced pluripotent stem cells : Perspectives of induced pluripotent stem cells. Cell Biol Toxicol 2016; 33:99-112. [PMID: 27900567 DOI: 10.1007/s10565-016-9370-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/18/2016] [Indexed: 02/06/2023]
Abstract
The recent establishment of induced pluripotent stem (iPS) cells promises the development of autologous cell therapies for degenerative diseases, without the ethical concerns associated with human embryonic stem (ES) cells. Initially, iPS cells were generated by retroviral transduction of somatic cells with core reprogramming genes. To avoid potential genotoxic effects associated with retroviral transfection, more recently, alternative non-viral gene transfer approaches were developed. Before a potential clinical application of iPS cell-derived therapies can be planned, it must be ensured that the reprogramming to pluripotency is not associated with genome mutagenesis or epigenetic aberrations. This may include direct effects of the reprogramming method or "off-target" effects associated with the reprogramming or the culture conditions. Thus, a rigorous safety testing of iPS or iPS-derived cells is imperative, including long-term studies in model animals. This will include not only rodents but also larger mammalian model species to allow for assessing long-term stability of the transplanted cells, functional integration into the host tissue, and freedom from undifferentiated iPS cells. Determination of the necessary cell dose is also critical; it is assumed that a minimum of 1 billion transplantable cells is required to achieve a therapeutic effect. This will request medium to long-term in vitro cultivation and dozens of cell divisions, bearing the risk of accumulating replication errors. Here, we review the clinical potential of human iPS cells and evaluate which are the most suitable approaches to overcome or minimize risks associated with the application of iPS cell-derived cell therapies.
Collapse
|
12
|
Watson AL, Carlson DF, Largaespada DA, Hackett PB, Fahrenkrug SC. Engineered Swine Models of Cancer. Front Genet 2016; 7:78. [PMID: 27242889 PMCID: PMC4860525 DOI: 10.3389/fgene.2016.00078] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the technology to engineer genetically modified swine has seen many advancements, and because their physiology is remarkably similar to that of humans, swine models of cancer may be extremely valuable for preclinical safety studies as well as toxicity testing of pharmaceuticals prior to the start of human clinical trials. Hence, the benefits of using swine as a large animal model in cancer research and the potential applications and future opportunities of utilizing pigs in cancer modeling are immense. In this review, we discuss how pigs have been and can be used as a biomedical models for cancer research, with an emphasis on current technologies. We have focused on applications of precision genetics that can provide models that mimic human cancer predisposition syndromes. In particular, we describe the advantages of targeted gene-editing using custom endonucleases, specifically TALENs and CRISPRs, and transposon systems, to make novel pig models of cancer with broad preclinical applications.
Collapse
Affiliation(s)
| | | | - David A Largaespada
- RecombineticsSt. Paul, MN, USA; Masonic Cancer Center, University of MinnesotaMinneapolis, MN, USA; Genetics, Cell Biology and Development, University of MinnesotaMinneapolis, MN, USA; Pediatrics, University of MinnesotaMinneapolis, MN, USA
| | - Perry B Hackett
- RecombineticsSt. Paul, MN, USA; Genetics, Cell Biology and Development, University of MinnesotaMinneapolis, MN, USA; Center for Genome Engineering, University of MinnesotaMinneapolis, MN, USA
| | | |
Collapse
|