1
|
Weiss B, Dikstein R. Unraveling the landscapes and regulation of scanning, leaky scanning, and 48S initiation complex conformations. Cell Rep 2024; 43:114126. [PMID: 38630588 DOI: 10.1016/j.celrep.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 01/19/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Scanning and initiation are critical steps in translation. Here, we utilized translation complex profiling (TCP-seq) to investigate 48S organization and eIF4G1-eIF1 inhibition impact. We provide global views of scanning and leaky scanning, uncovering a central role of eIF4G1-eIF1 in their regulation. We confirm AUG context importance, with non-leaky genes featuring a Kozak context and cytosine at positions -1 and +5. Capturing 48S complexes associated with eIF1, eIF4G1, eIF3, and eIF2 through selective TCP-seq revealed that the eIF3-scanning ribosome is highly vulnerable to eIF4G1-eIF1 inhibition, and eIF1 tends to dissociate upon AUG recognition. Initiation-site footprint analysis revealed a class spanning -12 to +18/19 from the AUG, representing the entire 48S and enriched with eIF2, eIF1, and eIF4G1, indicative of early initiation. Another eIF3-dependent class extends up to +26 and exhibits reduced eIF2 and eIF4G1 association, suggesting a late/alternative initiation complex. Our analysis provides an overview of scanning, initiation, and evidence for conformational rearrangements in vivo.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Rivka Dikstein
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
2
|
Inchingolo MA, Diman A, Adamczewski M, Humphreys T, Jaquier-Gubler P, Curran JA. TP53BP1, a dual-coding gene, uses promoter switching and translational reinitiation to express a smORF protein. iScience 2023; 26:106757. [PMID: 37216125 PMCID: PMC10193022 DOI: 10.1016/j.isci.2023.106757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
The complexity of the metazoan proteome is significantly increased by the expression of small proteins (<100 aa) derived from smORFs within lncRNAs, uORFs, 3' UTRs and, reading frames overlapping the CDS. These smORF encoded proteins (SEPs) have diverse roles, ranging from the regulation of cellular physiological to essential developmental functions. We report the characterization of a new member of this protein family, SEP53BP1, derived from a small internal ORF that overlaps the CDS encoding 53BP1. Its expression is coupled to the utilization of an alternative, cell-type specific promoter coupled to translational reinitiation events mediated by a uORF in the alternative 5' TL of the mRNA. This uORF-mediated reinitiation at an internal ORF is also observed in zebrafish. Interactome studies indicate that the human SEP53BP1 associates with components of the protein turnover pathway including the proteasome, and the TRiC/CCT chaperonin complex, suggesting that it may play a role in cellular proteostasis.
Collapse
Affiliation(s)
- Marta A. Inchingolo
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélie Diman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Maxime Adamczewski
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculté de Médecine et Pharmacie, Université Grenoble Alpes, Grenoble, France
| | - Tom Humphreys
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Joseph A. Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
3
|
Preinitiation Complex Loading onto mRNAs with Long versus Short 5' TLs. Int J Mol Sci 2022; 23:ijms232113369. [PMID: 36362157 PMCID: PMC9658832 DOI: 10.3390/ijms232113369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The first step in translation initiation consists in the recruitment of the small ribosome onto the mRNA. This preinitiation complex (PIC) loads via interactions with eIF4F that has assembled on the 5' cap. It then scans the 5' TL (transcript leader) to locate a start site. The molecular architecture of the PIC-mRNA complex over the cap is beginning to be resolved. As part of this, we have been examining the role of the 5' TL length. We observed in vivo initiation events on AUG codons positioned within 3 nts of the 5' cap and robust initiation in vitro at start sites immediately downstream of the 5' end. Ribosomal toe-printing confirmed the positioning of these codons within the P site, indicating that the ribosome reads from the +1 position. To explore differences in the eIF4E-5' cap interaction in the context of long versus short TL, we followed the fate of the eIF4E-cap interaction using a novel solid phase in vitro expression assay. We observed that ribosome recruitment onto a short TL disrupts the eIF4E-cap contact releasing all the mRNA from the solid phase, whereas with a long the mRNA distributes between both phases. These results are discussed in the context of current recruitment models.
Collapse
|
4
|
Nayak P, Kejriwal A, Ratnaparkhi GS. SUMOylation of Arginyl tRNA Synthetase Modulates the Drosophila Innate Immune Response. Front Cell Dev Biol 2021; 9:695630. [PMID: 34660574 PMCID: PMC8514731 DOI: 10.3389/fcell.2021.695630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
SUMO conjugation of a substrate protein can modify its activity, localization, interaction or function. A large number of SUMO targets in cells have been identified by Proteomics, but biological roles for SUMO conjugation for most targets remains elusive. The multi-aminoacyl tRNA synthetase complex (MARS) is a sensor and regulator of immune signaling. The proteins of this 1.2 MDa complex are targets of SUMO conjugation, in response to infection. Arginyl tRNA Synthetase (RRS), a member of the sub-complex II of MARS, is one such SUMO conjugation target. The sites for SUMO conjugation are Lys 147 and 383. Replacement of these residues by Arg (RRS K147R,K383R ), creates a SUMO conjugation resistant variant (RRS SCR ). Transgenic Drosophila lines for RRS WT and RRS SCR were generated by expressing these variants in a RRS loss of function (lof) animal, using the UAS-Gal4 system. The RRS-lof line was itself generated using CRISPR/Cas9 genome editing. Expression of both RRS WT and RRS SCR rescue the RRS-lof lethality. Adult animals expressing RRS WT and RRS SCR are compared and contrasted for their response to bacterial infection by gram positive M. luteus and gram negative Ecc15. We find that RRS SCR , when compared to RRS WT , shows modulation of the transcriptional response, as measured by quantitative 3' mRNA sequencing. Our study uncovers a possible non-canonical role for SUMOylation of RRS, a member of the MARS complex, in host-defense.
Collapse
Affiliation(s)
- Prajna Nayak
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Aarti Kejriwal
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | |
Collapse
|
5
|
Weiss B, Allen GE, Kloehn J, Abid K, Jaquier-Gubler P, Curran JA. eIF4E3 forms an active eIF4F complex during stresses (eIF4FS) targeting mTOR and re-programs the translatome. Nucleic Acids Res 2021; 49:5159-5176. [PMID: 33893802 PMCID: PMC8136781 DOI: 10.1093/nar/gkab267] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
The eIF4E are a family of initiation factors that bind the mRNA 5' cap, regulating the proteome and the cellular phenotype. eIF4E1 mediates global translation and its activity is controlled via the PI3K/AKT/mTOR pathway. mTOR down-regulation results in eIF4E1 sequestration into an inactive complex with the 4E binding proteins (4EBPs). The second member, eIF4E2, regulates the translatome during hypoxia. However, the exact function of the third member, eIF4E3, has remained elusive. We have dissected its function using a range of techniques. Starting from the observation that it does not interact with 4EBP1, we demonstrate that eIF4E3 recruitment into an eIF4F complex occurs when Torin1 inhibits the mTOR pathway. Ribo-seq studies demonstrate that this complex (eIF4FS) is translationally active during stress and that it selects specific mRNA populations based on 5' TL (UTR) length. The interactome reveals that it associates with cellular proteins beyond the cognate initiation factors, suggesting that it may have 'moon-lighting' functions. Finally, we provide evidence that cellular metabolism is altered in an eIF4E3 KO background but only upon Torin1 treatment. We propose that eIF4E3 acts as a second branch of the integrated stress response, re-programming the translatome to promote 'stress resistance' and adaptation.
Collapse
Affiliation(s)
- Benjamin Weiss
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - George Edward Allen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Karim Abid
- Catecholamine and Peptides Laboratory, Service of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Pascale Jaquier-Gubler
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | - Joseph Alphonsus Curran
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Switzerland
- Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Switzerland
| |
Collapse
|
6
|
Jiang X, Padarti A, Qu Y, Sheng S, Abou-Fadel J, Badr A, Zhang J. Alternatively spliced isoforms reveal a novel type of PTB domain in CCM2 protein. Sci Rep 2019; 9:15808. [PMID: 31676827 PMCID: PMC6825194 DOI: 10.1038/s41598-019-52386-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/17/2019] [Indexed: 12/24/2022] Open
Abstract
Cerebral cavernous malformations (CCMs) is a microvascular disorder in the central nervous system. Despite tremendous efforts, the causal genetic mutation in some CCM patients has not be identified, raising the possibility of an unknown CCM locus. The CCM2/MGC4607 gene has been identified as one of three known genes causing CCMs. In this report, we defined a total of 29 novel exons and 4 novel promoters in CCM2 genomic structure and subsequently identified a total of 50 new alternative spliced isoforms of CCM2 which eventually generated 22 novel protein isoforms. Genetic analysis of CCM2 isoforms revealed that the CCM2 isoforms can be classified into two groups based on their alternative promoters and alternative start codon exons. Our data demonstrated that CCM2 isoforms not only are specific in their subcellular compartmentation but also have distinct cellular expression patterns among various tissues and cells, indicating the pleiotropic cellular roles of CCM2 through their multiple isoforms. In fact, the complexity of the CCM2 genomic structure was reflected by the multiple layers of regulation of CCM2 expression patterns. At the transcriptional level, it is accomplished by alternative promoters, alternative splicing, and multiple transcriptional start sites and termination sites; while at the translational level, it is carried out with various cellular functions with a distinguishable CCM2 protein group pattern, specified abundance and composition of selective isoforms in a cell and tissue specific fashion. Through experimentation, we discovered a unique phosphotyrosine binding (PTB) domain, namely atypical phosphotyrosine binding (aPTB) domain. Some long CCM2 isoform proteins contain both classes of PTB domains, making them a dual PTB domain-containing protein. Both CCM1 and CCM3 can bind competitively to this aPTB domain, indicating CCM2 as the cornerstone for CCM signaling complex (CSC).
Collapse
Affiliation(s)
- Xiaoting Jiang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Akhil Padarti
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Yanchun Qu
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Shen Sheng
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Johnathan Abou-Fadel
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Ahmed Badr
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA
| | - Jun Zhang
- Department of Molecular and Translational Medicine (MTM), Texas Tech University Health Science Center El Paso, El Paso, TX, 79905, USA.
| |
Collapse
|
7
|
Chen HH, Tarn WY. uORF-mediated translational control: recently elucidated mechanisms and implications in cancer. RNA Biol 2019; 16:1327-1338. [PMID: 31234713 DOI: 10.1080/15476286.2019.1632634] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Protein synthesis is tightly regulated, and its dysregulation can contribute to the pathology of various diseases, including cancer. Increased or selective translation of mRNAs can promote cancer cell proliferation, metastasis and tumor expansion. Translational control is one of the most important means for cells to quickly adapt to environmental stresses. Adaptive translation involves various alternative mechanisms of translation initiation. Upstream open reading frames (uORFs) serve as a major regulator of stress-responsive translational control. Since recent advances in omics technologies including ribo-seq have expanded our knowledge of translation, we discuss emerging mechanisms for uORF-mediated translation regulation and its impact on cancer cell biology. A better understanding of dysregulated translational control of uORFs in cancer would facilitate the development of new strategies for cancer therapy.
Collapse
Affiliation(s)
- Hung-Hsi Chen
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| |
Collapse
|
8
|
Paquette DR, Mugridge JS, Weinberg DE, Gross JD. Application of a Schizosaccharomyces pombe Edc1-fused Dcp1-Dcp2 decapping enzyme for transcription start site mapping. RNA (NEW YORK, N.Y.) 2018; 24:251-257. [PMID: 29101277 PMCID: PMC5769751 DOI: 10.1261/rna.062737.117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/26/2017] [Indexed: 05/04/2023]
Abstract
Changes in the 5' leader of an mRNA can have profound effects on its translational efficiency with little effect on abundance. Sequencing-based methods to accurately map the 5' leader by identifying the first transcribed nucleotide rely on enzymatic removal of the 5' eukaryotic cap structure by tobacco acid pyrophosphatase (TAP). However, commercial TAP production has been problematic and has now been discontinued. RppH, a bacterial enzyme that can also cleave the 5' cap, and Cap-Clip, a plant-derived enzyme, have been marketed as TAP replacements. We have engineered a Schizosaccharomyces pombe Edc1-fused Dcp1-Dcp2 decapping enzyme that functions as a superior TAP replacement. It can be purified from E. coli overexpression in high yields using standard biochemical methods. This constitutively active enzyme is four orders of magnitude more catalytically efficient than RppH at 5' cap removal, compares favorably to Cap-Clip, and the 5' monophosphorylated RNA product is suitable for standard RNA cloning methods. This engineered enzyme is a better replacement for TAP treatment than the current marketed use of RppH and can be produced cost-effectively in a general laboratory setting, unlike Cap-Clip.
Collapse
Affiliation(s)
- David R Paquette
- Integrative Program in Quantitative Biology, Graduate Group in Biophysics, University of California, San Francisco, California 94158, USA
| | - Jeffrey S Mugridge
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| | - David E Weinberg
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, USA
- Sandler Faculty Fellows Program, University of California, San Francisco, California 94158, USA
| | - John D Gross
- Integrative Program in Quantitative Biology, Graduate Group in Biophysics, University of California, San Francisco, California 94158, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, USA
| |
Collapse
|
9
|
Liang XH, Sun H, Shen W, Wang S, Yao J, Migawa MT, Bui HH, Damle SS, Riney S, Graham MJ, Crooke RM, Crooke ST. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels. Nucleic Acids Res 2017; 45:9528-9546. [PMID: 28934489 PMCID: PMC5766168 DOI: 10.1093/nar/gkx632] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 12/31/2022] Open
Abstract
A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials.
Collapse
Affiliation(s)
- Xue-hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Shiyu Wang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Joyee Yao
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Michael T. Migawa
- Department of Medicinal Chemistry, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Huynh-Hoa Bui
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Sagar S. Damle
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stan Riney
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Mark J. Graham
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Rosanne M. Crooke
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| | - Stanley T. Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., Carlsbad, CA, USA
| |
Collapse
|
10
|
Reggiani C, Coppens S, Sekhara T, Dimov I, Pichon B, Lufin N, Addor MC, Belligni EF, Digilio MC, Faletra F, Ferrero GB, Gerard M, Isidor B, Joss S, Niel-Bütschi F, Perrone MD, Petit F, Renieri A, Romana S, Topa A, Vermeesch JR, Lenaerts T, Casimir G, Abramowicz M, Bontempi G, Vilain C, Deconinck N, Smits G. Novel promoters and coding first exons in DLG2 linked to developmental disorders and intellectual disability. Genome Med 2017; 9:67. [PMID: 28724449 PMCID: PMC5518101 DOI: 10.1186/s13073-017-0452-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Tissue-specific integrative omics has the potential to reveal new genic elements important for developmental disorders. METHODS Two pediatric patients with global developmental delay and intellectual disability phenotype underwent array-CGH genetic testing, both showing a partial deletion of the DLG2 gene. From independent human and murine omics datasets, we combined copy number variations, histone modifications, developmental tissue-specific regulation, and protein data to explore the molecular mechanism at play. RESULTS Integrating genomics, transcriptomics, and epigenomics data, we describe two novel DLG2 promoters and coding first exons expressed in human fetal brain. Their murine conservation and protein-level evidence allowed us to produce new DLG2 gene models for human and mouse. These new genic elements are deleted in 90% of 29 patients (public and in-house) showing partial deletion of the DLG2 gene. The patients' clinical characteristics expand the neurodevelopmental phenotypic spectrum linked to DLG2 gene disruption to cognitive and behavioral categories. CONCLUSIONS While protein-coding genes are regarded as well known, our work shows that integration of multiple omics datasets can unveil novel coding elements. From a clinical perspective, our work demonstrates that two new DLG2 promoters and exons are crucial for the neurodevelopmental phenotypes associated with this gene. In addition, our work brings evidence for the lack of cross-annotation in human versus mouse reference genomes and nucleotide versus protein databases.
Collapse
Affiliation(s)
- Claudio Reggiani
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Sandra Coppens
- Department of Neurology, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Tayeb Sekhara
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
- Present address: Neuropediatrics, Clinique Saint-Anne Saint-Rémy - CHIREC, Brussels, 1070 Belgium
| | - Ivan Dimov
- Faculté de Médecine, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Bruno Pichon
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Nicolas Lufin
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Marie-Claude Addor
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Elga Fabia Belligni
- Department of Public Health and Pediatrics, University of Torino, Turin, 10126 Italy
| | | | - Flavio Faletra
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
| | | | - Marion Gerard
- Laboratory of Medical Genetics, CHU de Caen - Hôpital Clémenceau, Caen, 14033 Caen Cedex, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, 44093 Nantes Cedex 1, France
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, South Glasgow University Hospitals, Glasgow, G51 4TF UK
| | - Florence Niel-Bütschi
- Service de Médecine Génétique, Centre Hospitalier Universitaire Vaudois CHUV, Lausanne, 1011 Switzerland
| | - Maria Dolores Perrone
- S.C. Medical Genetics, Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, 34137 Italy
- Present address: Assisted Fertilization Department, Casa di Cura Città di Udine, Udine, 33100 Italy
| | - Florence Petit
- Service de Génétique, CHRU de Lille - Hôpital Jeanne de Flandre, Lille, 59000 France
| | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, 53100 Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, 53100 Italy
| | - Serge Romana
- Service d’Histologie Embryologie Cytogénétique, Hôpital Necker Enfants Malades, Paris, 75015 France
- Université Paris Descartes - Institut IMAGINE, Paris, 75015 France
| | - Alexandra Topa
- Department of Clinical Pathology and Genetics, Sahlgrenska University Hospital, Gothenburg, 413 45 Sweden
| | | | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
- AI lab, Vrije Universiteit Brussel, Brussels, 1050 Belgium
| | - Georges Casimir
- Pediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Marc Abramowicz
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- Machine Learning Group, Université Libre de Bruxelles, Brussels, 1050 Belgium
| | - Catheline Vilain
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Nicolas Deconinck
- Neuropediatrics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| | - Guillaume Smits
- Interuniversity Institute of Bioinformatics in Brussels ULB-VUB, Brussels, 1050 Belgium
- ULB Center of Medical Genetics, Hôpital Erasme, Université Libre de Bruxelles, Brussels, 1070 Belgium
- Genetics, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles, Brussels, 1020 Belgium
| |
Collapse
|