1
|
Rajan-Babu IS, Dolzhenko E, Eberle MA, Friedman JM. Sequence composition changes in short tandem repeats: heterogeneity, detection, mechanisms and clinical implications. Nat Rev Genet 2024; 25:476-499. [PMID: 38467784 DOI: 10.1038/s41576-024-00696-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 03/13/2024]
Abstract
Short tandem repeats (STRs) are a class of repetitive elements, composed of tandem arrays of 1-6 base pair sequence motifs, that comprise a substantial fraction of the human genome. STR expansions can cause a wide range of neurological and neuromuscular conditions, known as repeat expansion disorders, whose age of onset, severity, penetrance and/or clinical phenotype are influenced by the length of the repeats and their sequence composition. The presence of non-canonical motifs, depending on the type, frequency and position within the repeat tract, can alter clinical outcomes by modifying somatic and intergenerational repeat stability, gene expression and mutant transcript-mediated and/or protein-mediated toxicities. Here, we review the diverse structural conformations of repeat expansions, technological advances for the characterization of changes in sequence composition, their clinical correlations and the impact on disease mechanisms.
Collapse
Affiliation(s)
- Indhu-Shree Rajan-Babu
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada.
| | | | | | - Jan M Friedman
- Department of Medical Genetics, The University of British Columbia, and Children's & Women's Hospital, Vancouver, British Columbia, Canada
- BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
2
|
Shelton WJ, Zandpazandi S, Nix JS, Gokden M, Bauer M, Ryan KR, Wardell CP, Vaske OM, Rodriguez A. Long-read sequencing for brain tumors. Front Oncol 2024; 14:1395985. [PMID: 38915364 PMCID: PMC11194609 DOI: 10.3389/fonc.2024.1395985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/27/2024] [Indexed: 06/26/2024] Open
Abstract
Brain tumors and genomics have a long-standing history given that glioblastoma was the first cancer studied by the cancer genome atlas. The numerous and continuous advances through the decades in sequencing technologies have aided in the advanced molecular characterization of brain tumors for diagnosis, prognosis, and treatment. Since the implementation of molecular biomarkers by the WHO CNS in 2016, the genomics of brain tumors has been integrated into diagnostic criteria. Long-read sequencing, also known as third generation sequencing, is an emerging technique that allows for the sequencing of longer DNA segments leading to improved detection of structural variants and epigenetics. These capabilities are opening a way for better characterization of brain tumors. Here, we present a comprehensive summary of the state of the art of third-generation sequencing in the application for brain tumor diagnosis, prognosis, and treatment. We discuss the advantages and potential new implementations of long-read sequencing into clinical paradigms for neuro-oncology patients.
Collapse
Affiliation(s)
- William J Shelton
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Sara Zandpazandi
- Department of Neurosurgery, Medical University of South Carolina, Charleston, SC, United States
| | - J Stephen Nix
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Murat Gokden
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Michael Bauer
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Katie Rose Ryan
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher P Wardell
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Olena Morozova Vaske
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Analiz Rodriguez
- Department of Neurosurgery, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Yu SY, Xi YL, Xu FQ, Zhang J, Liu YS. Application of long read sequencing in rare diseases: The longer, the better? Eur J Med Genet 2023; 66:104871. [PMID: 38832911 DOI: 10.1016/j.ejmg.2023.104871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 06/06/2024]
Abstract
Rare diseases encompass a diverse group of genetic disorders that affect a small proportion of the population. Identifying the underlying genetic causes of these conditions presents significant challenges due to their genetic heterogeneity and complexity. Conventional short-read sequencing (SRS) techniques have been widely used in diagnosing and investigating of rare diseases, with limitations due to the nature of short-read lengths. In recent years, long read sequencing (LRS) technologies have emerged as a valuable tool in overcoming these limitations. This minireview provides a concise overview of the applications of LRS in rare disease research and diagnosis, including the identification of disease-causing tandem repeat expansions, structural variations, and comprehensive analysis of pathogenic variants with LRS.
Collapse
Affiliation(s)
- Si-Yan Yu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Lin Xi
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Fu-Qiang Xu
- Department of Gynecology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Jian Zhang
- Department of Medical Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China.
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Affiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital), Wuxi, Jiangsu, China; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China.
| |
Collapse
|
4
|
Goldman JS, Uhlmann WR, Naini AB, Klitzman RL, Marder KS. Genetic Testing of HTT Modifiers for Huntington's Disease: Considerations for Clinical Guidelines. Mov Disord 2023; 38:2151-2154. [PMID: 37975739 DOI: 10.1002/mds.29650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/24/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023] Open
Affiliation(s)
- Jill S Goldman
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy R Uhlmann
- Departments of Internal Medicine and Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali B Naini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, New York, USA
| | - Robert L Klitzman
- Department of Psychiatry, Columbia University Irving Medical Center, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Karen S Marder
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
5
|
Hou F, Mao A, Shan S, Li Y, Meng W, Zhan J, Nie W, Jin H. Evaluating the clinical utility of a long-read sequencing-based approach in genetic testing of fragile-X syndrome. Clin Chim Acta 2023; 551:117614. [PMID: 38375623 DOI: 10.1016/j.cca.2023.117614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 02/21/2024]
Abstract
BACKGROUND Fragile X syndrome (FXS) arises from the FMR1 CGG expansion. Comprehensive genetic testing for FMR1 CGG expansions, AGG interruptions, and microdeletions is essential to provide genetic counseling for females carrying premutation alleles. However, conventional PCR-based FMR1 assays mainly focus on CGG repeats, and could detect AGG interruption only in males. METHODS The clinical utility of a long-read sequencing-based assay termed comprehensive analysis of FXS (CAFXS) was evaluated in 238 high-risk samples by comparing to conventional PCR assays. RESULTS PCR assays identified five premuation and three full mutation categories alleles in all the samples, and CAFXS successfully called all the FMR1 CGG expansion. CAFXS identified 24-bp microdeletions upstream to the trinucleotide region with 30 CGG repeats, which was miscalled by the length-based PCR methods. CAFXS also identified a 187-bp deletion in about 1/7 of the sequencing reads in a male patient with mosaic full mutation alleles. CAFXS allowed for precise constructing the FMR1 CGG repeat and AGG interruption pattern in all the samples, and identified a novel and alternative CGA interruption in one normal female sample. CONCLUSIONS CAFXS represents a more comprehensive and accurate approach for FXS genetic testing that potentially enables more informed genetic counseling compared to PCR-based methods.
Collapse
Affiliation(s)
- Fei Hou
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing 102200, China
| | - Shan Shan
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Yan Li
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing 102200, China
| | - Jiahan Zhan
- Berry Genomics Corporation, Beijing 102200, China
| | - Wenying Nie
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China
| | - Hua Jin
- Department of Prenatal Diagnosis, Jinan Maternal and Child Health Hospital, Jinan 250001, Shandong Province, China.
| |
Collapse
|
6
|
Abstract
The options for prenatal genetic testing have evolved rapidly in the past decade, and advances in sequencing technology now allow genetic diagnoses to be made down to the single-base-pair level, even before the birth of the child. This offers women the opportunity to obtain information regarding the foetus, thereby empowering them to make informed decisions about their pregnancy. As genetic testing becomes increasingly available to women, clinician knowledge and awareness of the options available to women is of great importance. Additionally, comprehensive pretest and posttest genetic counselling about the advantages, pitfalls and limitations of genetic testing should be provided to all women. This review article aims to cover the range of genetic tests currently available in prenatal screening and diagnosis, their current applications and limitations in clinical practice as well as what the future holds for prenatal genetics.
Collapse
Affiliation(s)
- Karen Mei Xian Lim
- Department of Obstetrics and Gynaecology, National University Health System, Singapore
| | - Aniza Puteri Mahyuddin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, National University Health System, Singapore,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore,Correspondence: A/Prof Mahesh Choolani, Head and Senior Consultant, Department of Obstetrics and Gynaecology, National University Health System, NUHS Tower Block, Level 12, 1E Kent Ridge Road, 119228, Singapore. E-mail:
| |
Collapse
|
7
|
Udine E, Jain A, van Blitterswijk M. Advances in sequencing technologies for amyotrophic lateral sclerosis research. Mol Neurodegener 2023; 18:4. [PMID: 36635726 PMCID: PMC9838075 DOI: 10.1186/s13024-022-00593-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/23/2022] [Indexed: 01/14/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by upper and lower motor neuron loss and has a fairly rapid disease progression, leading to fatality in an average of 2-5 years after symptom onset. Numerous genes have been implicated in this disease; however, many cases remain unexplained. Several technologies are being used to identify regions of interest and investigate candidate genes. Initial approaches to detect ALS genes include, among others, linkage analysis, Sanger sequencing, and genome-wide association studies. More recently, next-generation sequencing methods, such as whole-exome and whole-genome sequencing, have been introduced. While those methods have been particularly useful in discovering new ALS-linked genes, methodological advances are becoming increasingly important, especially given the complex genetics of ALS. Novel sequencing technologies, like long-read sequencing, are beginning to be used to uncover the contribution of repeat expansions and other types of structural variation, which may help explain missing heritability in ALS. In this review, we discuss how popular and/or upcoming methods are being used to discover ALS genes, highlighting emerging long-read sequencing platforms and their role in aiding our understanding of this challenging disease.
Collapse
Affiliation(s)
- Evan Udine
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Angita Jain
- grid.417467.70000 0004 0443 9942Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Mayo Clinic Graduate School of Biomedical Sciences, 4500 San Pablo Road S, Jacksonville, FL 32224 USA ,grid.417467.70000 0004 0443 9942Center for Clinical and Translational Sciences, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL 32224 USA
| | - Marka van Blitterswijk
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road S, Jacksonville, FL, 32224, USA.
| |
Collapse
|
8
|
Miller AR, Wijeratne S, McGrath SD, Schieffer KM, Miller KE, Lee K, Mathew M, LaHaye S, Fitch JR, Kelly BJ, White P, Mardis ER, Wilson RK, Cottrell CE, Magrini V. Pacific Biosciences Fusion and Long Isoform Pipeline for Cancer Transcriptome-Based Resolution of Isoform Complexity. J Mol Diagn 2022; 24:1292-1306. [PMID: 36191838 DOI: 10.1016/j.jmoldx.2022.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/05/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
Genomic profiling using short-read sequencing has utility in detecting disease-associated variation in both DNA and RNA. However, given the frequent occurrence of structural variation in cancer, molecular profiling using long-read sequencing improves the resolution of such events. For example, the Pacific Biosciences long-read RNA-sequencing (Iso-Seq) transcriptome protocol provides full-length isoform characterization, discernment of allelic phasing, and isoform discovery, and identifies expressed fusion partners. The Pacific Biosciences Fusion and Long Isoform Pipeline (PB_FLIP) incorporates a suite of RNA-sequencing software analysis tools and scripts to identify expressed fusion partners and isoforms. In addition, sequencing of a commercial reference (Spike-In RNA Variants) with known isoform complexity was performed and demonstrated high recall of the Iso-Seq and PB_FLIP workflow to benchmark our protocol and analysis performance. This study describes the utility of Iso-Seq and PB_FLIP analysis in improving deconvolution of complex structural variants and isoform detection within an institutional pediatric and adolescent/young adult translational cancer research cohort. The exemplar case studies demonstrate that Iso-Seq and PB_FLIP discover novel expressed fusion partners, resolve complex intragenic alterations, and discriminate between allele-specific expression profiles.
Collapse
Affiliation(s)
- Anthony R Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Saranga Wijeratne
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Sean D McGrath
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Kathleen M Schieffer
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Kristy Lee
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mariam Mathew
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Stephanie LaHaye
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - James R Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Benjamin J Kelly
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Elaine R Mardis
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Neurosurgery, The Ohio State University College of Medicine, Columbus, Ohio
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine E Cottrell
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio; Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio.
| | - Vincent Magrini
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
9
|
Liang Q, Liu Y, Liu Y, Duan R, Meng W, Zhan J, Xia J, Mao A, Liang D, Wu L. Comprehensive Analysis of Fragile X Syndrome: Full Characterization of the FMR1 Locus by Long-Read Sequencing. Clin Chem 2022; 68:1529-1540. [PMID: 36171182 DOI: 10.1093/clinchem/hvac154] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Fragile X syndrome (FXS) is the most frequent cause of inherited X-linked intellectual disability. Conventional FXS genetic testing methods mainly focus on FMR1 CGG expansions and fail to identify AGG interruptions, rare intragenic variants, and large gene deletions. METHODS A long-range PCR and long-read sequencing-based assay termed comprehensive analysis of FXS (CAFXS) was developed and evaluated in Coriell and clinical samples by comparing to Southern blot analysis and triplet repeat-primed PCR (TP-PCR). RESULTS CAFXS accurately detected the number of CGG repeats in the range of 93 to at least 940 with mass fraction of 0.5% to 1% in the background of normal alleles, which was 2-4-fold analytically more sensitive than TP-PCR. All categories of mutations detected by control methods, including full mutations in 30 samples, were identified by CAFXS for all 62 clinical samples. CAFXS accurately determined AGG interruptions in all 133 alleles identified, even in mosaic alleles. CAFXS successfully identified 2 rare intragenic variants including the c.879A > C variant in exon 9 and a 697-bp microdeletion flanking upstream of CGG repeats, which disrupted primer annealing in TP-PCR assay. In addition, CAFXS directly determined the breakpoints of a 237.1-kb deletion and a 774.0-kb deletion encompassing the entire FMR1 gene in 2 samples. CONCLUSIONS Long-read sequencing-based CAFXS represents a comprehensive assay for identifying FMR1 CGG expansions, AGG interruptions, rare intragenic variants, and large gene deletions, which greatly improves the genetic screening and diagnosis for FXS.
Collapse
Affiliation(s)
- Qiaowei Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Yingdi Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaning Liu
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Ranhui Duan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Wanli Meng
- Berry Genomics Corporation, Beijing, China
| | | | - Jiahui Xia
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China
| | - Aiping Mao
- Berry Genomics Corporation, Beijing, China
| | - Desheng Liang
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lingqian Wu
- Department of Medical Genetics, Hunan Jiahui Genetics Hospital, Changsha, Hunan, China.,Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Marsili L, Duque KR, Bode RL, Kauffman MA, Espay AJ. Uncovering Essential Tremor Genetics: The Promise of Long-Read Sequencing. Front Neurol 2022; 13:821189. [PMID: 35401394 PMCID: PMC8983820 DOI: 10.3389/fneur.2022.821189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/23/2022] Open
Abstract
Long-read sequencing (LRS) technologies have been recently introduced to overcome intrinsic limitations of widely-used next-generation sequencing (NGS) technologies, namely the sequencing limited to short-read fragments (150–300 base pairs). Since its introduction, LRS has permitted many successes in unraveling hidden mutational mechanisms. One area in clinical neurology in need of rethinking as it applies to genetic mechanisms is essential tremor (ET). This disorder, among the most common in neurology, is a syndrome often exhibiting an autosomal dominant pattern of inheritance whose large phenotypic spectrum suggest a multitude of genetic etiologies. Exome sequencing has revealed the genetic etiology only in rare ET families (FUS, SORT1, SCN4A, NOS3, KCNS2, HAPLN4/BRAL2, and USP46). We hypothesize that a reason for this shortcoming may be non-classical genetic mechanism(s) underpinning ET, among them trinucleotide, tetranucleotide, or pentanucleotide repeat disorders. In support of this hypothesis, trinucleotide (e.g., GGC repeats in NOTCH2NLC) and pentanucleotide repeat disorders (e.g., ATTTC repeats in STARD7) have been revealed as pathogenic in patients with a past history of what has come to be referred to as “ET plus,” bilateral hand tremor associated with epilepsy and/or leukoencephalopathy. A systematic review of LRS in neurodegenerative disorders showed that 10 of the 22 (45%) genetic etiologies ascertained by LRS include tremor in their phenotypic spectrum, suggesting that future clinical applications of LRS for tremor disorders may uncover genetic subtypes of familial ET that have eluded NGS, particularly those with associated leukoencephalopathy or family history of epilepsy. LRS provides a pathway for potentially uncovering novel genes and genetic mechanisms, helping narrow the large proportion of “idiopathic” ET.
Collapse
Affiliation(s)
- Luca Marsili
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Kevin R. Duque
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Rachel L. Bode
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Marcelo A. Kauffman
- Consultorio y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Alberto J. Espay
- James J. and Joan A. Gardner Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Alberto J. Espay
| |
Collapse
|
11
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Grosso V, Marcolungo L, Maestri S, Alfano M, Lavezzari D, Iadarola B, Salviati A, Mariotti B, Botta A, D’Apice MR, Novelli G, Delledonne M, Rossato M. Characterization of FMR1 Repeat Expansion and Intragenic Variants by Indirect Sequence Capture. Front Genet 2021; 12:743230. [PMID: 34646309 PMCID: PMC8504923 DOI: 10.3389/fgene.2021.743230] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/26/2021] [Indexed: 11/30/2022] Open
Abstract
Traditional methods for the analysis of repeat expansions, which underlie genetic disorders, such as fragile X syndrome (FXS), lack single-nucleotide resolution in repeat analysis and the ability to characterize causative variants outside the repeat array. These drawbacks can be overcome by long-read and short-read sequencing, respectively. However, the routine application of next-generation sequencing in the clinic requires target enrichment, and none of the available methods allows parallel analysis of long-DNA fragments using both sequencing technologies. In this study, we investigated the use of indirect sequence capture (Xdrop technology) coupled to Nanopore and Illumina sequencing to characterize FMR1, the gene responsible of FXS. We achieved the efficient enrichment (> 200×) of large target DNA fragments (~60-80 kbp) encompassing the entire FMR1 gene. The analysis of Xdrop-enriched samples by Nanopore long-read sequencing allowed the complete characterization of repeat lengths in samples with normal, pre-mutation, and full mutation status (> 1 kbp), and correctly identified repeat interruptions relevant for disease prognosis and transmission. Single-nucleotide variants (SNVs) and small insertions/deletions (indels) could be detected in the same samples by Illumina short-read sequencing, completing the mutational testing through the identification of pathogenic variants within the FMR1 gene, when no typical CGG repeat expansion is detected. The study successfully demonstrated the parallel analysis of repeat expansions and SNVs/indels in the FMR1 gene at single-nucleotide resolution by combining Xdrop enrichment with two next-generation sequencing approaches. With the appropriate optimization necessary for the clinical settings, the system could facilitate both the study of genotype-phenotype correlation in FXS and enable a more efficient diagnosis and genetic counseling for patients and their relatives.
Collapse
Affiliation(s)
- Valentina Grosso
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Marcolungo
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Simone Maestri
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Denise Lavezzari
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Barbara Iadarola
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alessandro Salviati
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Barbara Mariotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Annalisa Botta
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical Genetics Section, University of Rome "Tor Vergata", Rome, Italy
- IRCCS Neuromed Mediterranean Neurological Institute, Pozzilli, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Massimo Delledonne
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| | - Marzia Rossato
- Department of Biotechnology, University of Verona, Verona, Italy
- GENARTIS srl, Verona, Italy
| |
Collapse
|
13
|
Su Y, Fan L, Shi C, Wang T, Zheng H, Luo H, Zhang S, Hu Z, Fan Y, Dong Y, Yang J, Mao C, Xu Y. Deciphering Neurodegenerative Diseases Using Long-Read Sequencing. Neurology 2021; 97:423-433. [PMID: 34389649 PMCID: PMC8408508 DOI: 10.1212/wnl.0000000000012466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/23/2021] [Indexed: 11/15/2022] Open
Abstract
Neurodegenerative diseases exhibit chronic progressive lesions in the central and peripheral nervous systems with unclear causes. The search for pathogenic mutations in human neurodegenerative diseases has benefited from massively parallel short-read sequencers. However, genomic regions, including repetitive elements, especially with high/low GC content, are far beyond the capability of conventional approaches. Recently, long-read single-molecule DNA sequencing technologies have emerged and enabled researchers to study genomes, transcriptomes, and metagenomes at unprecedented resolutions. The identification of novel mutations in unresolved neurodegenerative disorders, the characterization of causative repeat expansions, and the direct detection of epigenetic modifications on naive DNA by virtue of long-read sequencers will further expand our understanding of neurodegenerative diseases. In this article, we review and compare 2 prevailing long-read sequencing technologies, Pacific Biosciences and Oxford Nanopore Technologies, and discuss their applications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Shuo Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Zhengwei Hu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yali Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China .,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, P. R. China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
14
|
Laboratory testing for fragile X, 2021 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 2021; 23:799-812. [PMID: 33795824 DOI: 10.1038/s41436-021-01115-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/08/2022] Open
Abstract
Molecular genetic testing of the FMR1 gene is commonly performed in clinical laboratories. Pathogenic variants in the FMR1 gene are associated with fragile X syndrome, fragile X-associated tremor ataxia syndrome (FXTAS), and fragile X-associated primary ovarian insufficiency (FXPOI). This document provides updated information regarding FMR1 pathogenic variants, including prevalence, genotype-phenotype correlations, and variant nomenclature. Methodological considerations are provided for Southern blot analysis and polymerase chain reaction (PCR) amplification of FMR1, including triplet repeat-primed and methylation-specific PCR.The American College of Medical Genetics and Genomics (ACMG) Laboratory Quality Assurance Committee has the mission of maintaining high technical standards for the performance and interpretation of genetic tests. In part, this is accomplished by the publication of the document ACMG Technical Standards for Clinical Genetics Laboratories, which is now maintained online ( http://www.acmg.net ). This subcommittee also reviews the outcome of national proficiency testing in the genetics area and may choose to focus on specific diseases or methodologies in response to those results. Accordingly, the subcommittee selected fragile X syndrome to be the first topic in a series of supplemental sections, recognizing that it is one of the most frequently ordered genetic tests and that it has many alternative methods with different strengths and weaknesses. This document is the fourth update to the original standards and guidelines for fragile X testing that were published in 2001, with revisions in 2005 and 2013, respectively.This versionClarifies the clinical features associated with different FMRI variants (Section 2.3)Discusses important reporting considerations (Section 3.3.1.3)Provides updates on technology (Section 4.1).
Collapse
|
15
|
Macken WL, Vandrovcova J, Hanna MG, Pitceathly RDS. Applying genomic and transcriptomic advances to mitochondrial medicine. Nat Rev Neurol 2021; 17:215-230. [PMID: 33623159 DOI: 10.1038/s41582-021-00455-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2021] [Indexed: 02/07/2023]
Abstract
Next-generation sequencing (NGS) has increased our understanding of the molecular basis of many primary mitochondrial diseases (PMDs). Despite this progress, many patients with suspected PMD remain without a genetic diagnosis, which restricts their access to in-depth genetic counselling, reproductive options and clinical trials, in addition to hampering efforts to understand the underlying disease mechanisms. Although they represent a considerable improvement over their predecessors, current methods for sequencing the mitochondrial and nuclear genomes have important limitations, and molecular diagnostic techniques are often manual and time consuming. However, recent advances in genomics and transcriptomics offer realistic solutions to these challenges. In this Review, we discuss the current genetic testing approach for PMDs and the opportunities that exist for increased use of whole-genome NGS of nuclear and mitochondrial DNA (mtDNA) in the clinical environment. We consider the possible role for long-read approaches in sequencing of mtDNA and in the identification of novel nuclear genomic causes of PMDs. We examine the expanding applications of RNA sequencing, including the detection of cryptic variants that affect splicing and gene expression and the interpretation of rare and novel mitochondrial transfer RNA variants.
Collapse
Affiliation(s)
- William L Macken
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Jana Vandrovcova
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
16
|
Franck S, Barbé L, Ardui S, De Vlaeminck Y, Allemeersch J, Dziedzicka D, Spits C, Vanroye F, Hilven P, Duqué G, Vermeesch JR, Gheldof A, Sermon K. MSH2 knock-down shows CTG repeat stability and concomitant upstream demethylation at the DMPK locus in myotonic dystrophy type 1 human embryonic stem cells. Hum Mol Genet 2020; 29:3566-3577. [PMID: 33242073 DOI: 10.1093/hmg/ddaa250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for systems and Therapeutics, Gladstone Institutes, Finkbeiner lab, San Francisco, CA 94158, USA
| | - Simon Ardui
- Center of Human Genetics, University Hospital Leuven, KU Leuven, Laboratory for Cytogenetics and Genome Research, Leuven 3000, Belgium
| | - Yannick De Vlaeminck
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Dominika Dziedzicka
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Fien Vanroye
- Laboratory HIV/STD, Institute of Tropical Medicine Antwerp, Antwerp 2000, Belgium
| | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Joris R Vermeesch
- Center of Human Genetics, University Hospital Leuven, KU Leuven, Laboratory for Cytogenetics and Genome Research, Leuven 3000, Belgium
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center of Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Karen Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
17
|
Rodrigues B, Vale-Fernandes E, Maia N, Santos F, Marques I, Santos R, Nogueira AJA, Jorge P. Development and Validation of a Mathematical Model to Predict the Complexity of FMR1 Allele Combinations. Front Genet 2020; 11:557147. [PMID: 33281866 PMCID: PMC7691586 DOI: 10.3389/fgene.2020.557147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/13/2020] [Indexed: 12/04/2022] Open
Abstract
The polymorphic trinucleotide repetitive region in the FMR1 gene 5'UTR contains AGG interspersions, particularly in normal-sized alleles (CGG < 45). In this range repetitive stretches are typically interrupted once or twice, although alleles without or with three or more AGG interspersions can also be observed. AGG interspersions together with the total length of the repetitive region confer stability and hinder expansion to pathogenic ranges: either premutation (55 < CGG < 200) or full mutation (CGG > 200). The AGG interspersions have long been identified as one of the most important features of FMR1 repeat stability, being particularly important to determine expansion risk estimates in female premutation carriers. We sought to compute the combined AGG interspersion numbers and patterns, aiming to define FMR1 repetitive tract complexity combinations. A mathematical model, the first to compute this cumulative effect, was developed and validated using data from 131 young and healthy females. Plotting of their allelic complexity enabled the identification of two statistically distinct groups - equivalent and dissimilar allelic combinations. The outcome, a numerical parameter designated allelic score, depicts the repeat substructure of each allele, measuring the allelic complexity of the FMR1 gene including the AGGs burden, thus allowing new behavioral scrutiny of normal-sized alleles in females.
Collapse
Affiliation(s)
- Bárbara Rodrigues
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Emídio Vale-Fernandes
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
- Centre for Medically Assisted Procreation/Public Gamete Bank, Centro Materno-Infantil do Norte Dr. Albino Aroso (CMIN), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
| | - Nuno Maia
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Flávia Santos
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Isabel Marques
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rosário Santos
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - António J. A. Nogueira
- Center for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Paula Jorge
- Molecular Genetics Unit, Centro de Genética Médica Dr. Jacinto Magalhães (CGMJM), Centro Hospitalar Universitário do Porto (CHUP), Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Xiao T, Zhou W. The third generation sequencing: the advanced approach to genetic diseases. Transl Pediatr 2020; 9:163-173. [PMID: 32477917 PMCID: PMC7237973 DOI: 10.21037/tp.2020.03.06] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/05/2020] [Indexed: 01/05/2023] Open
Abstract
Genomic sequencing technologies have revolutionized mutation detection of the genetic diseases in the past few years. In recent years, the third generation sequencing (TGS) has been gaining insight into more genetic diseases owing to the single molecular and real time sequencing technology. This paper reviews the genomic sequencing revolutionary history first and then focuses on the genetic diseases discovered through the TGS and the clinical effects of the TGS, which is followed by the discussion of the improvement in the bioinformatic analysis for the TGS and its limitations. In summary, the TGS has been enhancing the diagnostic accuracy of genetic diseases in molecular level as well as paving a new way for basic researches and therapies.
Collapse
Affiliation(s)
- Tiantian Xiao
- Clinic of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Department of Neonatology, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wenhao Zhou
- Clinic of Neonatology, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, Shanghai 201102, China
- Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, Shanghai 201102, China
| |
Collapse
|
19
|
Johansen Taber K, Lim-Harashima J, Naemi H, Goldberg J. Fragile X syndrome carrier screening accompanied by genetic consultation has clinical utility in populations beyond those recommended by guidelines. Mol Genet Genomic Med 2019; 7:e1024. [PMID: 31694075 PMCID: PMC6900367 DOI: 10.1002/mgg3.1024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/30/2019] [Accepted: 10/01/2019] [Indexed: 01/12/2023] Open
Abstract
Background Fragile X syndrome (FXS) is the most common inherited form of intellectual disability. Many providers offer preconception or prenatal FXS carrier screening. However, guidelines recommend screening only for those with a family history or undergoing fertility evaluation. Wider screening has been resisted because of concerns about patient understanding of FXS‐associated inheritance patterns and phenotypes. Additionally, the clinical utility has been questioned. Methods We addressed these concerns by analyzing reproductive decision‐making and pregnancy management informed by post‐test genetic consultation among 122 FMR1 premutation carriers identified by expanded carrier screening. Results Sixty‐three percent of those screened met guidelines screening criteria; the remaining 37% did not. Ninety‐eight percent had undergone post‐test genetic consultation. Of respondents screened preconceptionally, 74% reported planning or pursuing actions to reduce the risk of an affected pregnancy; the extent to which couples planned/pursued these actions was not significantly different between those meeting either screening criterion (76%) versus those meeting neither criterion (55%). Of respondents screened prenatally, 41% pursued prenatal diagnostic testing; the extent to which couples pursued prenatal diagnosis was not significantly different between those who met either screening criterion (37%) versus those who met neither criterion (31%). Conclusion These results support the expansion of FXS screening criteria in guidelines.
Collapse
Affiliation(s)
| | | | | | - Jim Goldberg
- Myriad Women's Health, South San Francisco, CA, USA
| |
Collapse
|
20
|
Long-read sequencing for rare human genetic diseases. J Hum Genet 2019; 65:11-19. [PMID: 31558760 DOI: 10.1038/s10038-019-0671-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
During the past decade, the search for pathogenic mutations in rare human genetic diseases has involved huge efforts to sequence coding regions, or the entire genome, using massively parallel short-read sequencers. However, the approximate current diagnostic rate is <50% using these approaches, and there remain many rare genetic diseases with unknown cause. There may be many reasons for this, but one plausible explanation is that the responsible mutations are in regions of the genome that are difficult to sequence using conventional technologies (e.g., tandem-repeat expansion or complex chromosomal structural aberrations). Despite the drawbacks of high cost and a shortage of standard analytical methods, several studies have analyzed pathogenic changes in the genome using long-read sequencers. The results of these studies provide hope that further application of long-read sequencers to identify the causative mutations in unsolved genetic diseases may expand our understanding of the human genome and diseases. Such approaches may also be applied to molecular diagnosis and therapeutic strategies for patients with genetic diseases in the future.
Collapse
|
21
|
Mantere T, Kersten S, Hoischen A. Long-Read Sequencing Emerging in Medical Genetics. Front Genet 2019; 10:426. [PMID: 31134132 PMCID: PMC6514244 DOI: 10.3389/fgene.2019.00426] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
The wide implementation of next-generation sequencing (NGS) technologies has revolutionized the field of medical genetics. However, the short read lengths of currently used sequencing approaches pose a limitation for the identification of structural variants, sequencing repetitive regions, phasing of alleles and distinguishing highly homologous genomic regions. These limitations may significantly contribute to the diagnostic gap in patients with genetic disorders who have undergone standard NGS, like whole exome or even genome sequencing. Now, the emerging long-read sequencing (LRS) technologies may offer improvements in the characterization of genetic variation and regions that are difficult to assess with the prevailing NGS approaches. LRS has so far mainly been used to investigate genetic disorders with previously known or strongly suspected disease loci. While these targeted approaches already show the potential of LRS, it remains to be seen whether LRS technologies can soon enable true whole genome sequencing routinely. Ultimately, this could allow the de novo assembly of individual whole genomes used as a generic test for genetic disorders. In this article, we summarize the current LRS-based research on human genetic disorders and discuss the potential of these technologies to facilitate the next major advancements in medical genetics.
Collapse
Affiliation(s)
- Tuomo Mantere
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Simone Kersten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Internal Medicine, Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
22
|
Lincoln SE, Truty R, Lin CF, Zook JM, Paul J, Ramey VH, Salit M, Rehm HL, Nussbaum RL, Lebo MS. A Rigorous Interlaboratory Examination of the Need to Confirm Next-Generation Sequencing-Detected Variants with an Orthogonal Method in Clinical Genetic Testing. J Mol Diagn 2019; 21:318-329. [PMID: 30610921 PMCID: PMC6629256 DOI: 10.1016/j.jmoldx.2018.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/24/2018] [Indexed: 12/17/2022] Open
Abstract
Orthogonal confirmation of next-generation sequencing (NGS)-detected germline variants is standard practice, although published studies have suggested that confirmation of the highest-quality calls may not always be necessary. The key question is how laboratories can establish criteria that consistently identify those NGS calls that require confirmation. Most prior studies addressing this question have had limitations: they have been generally of small scale, omitted statistical justification, and explored limited aspects of underlying data. The rigorous definition of criteria that separate high-accuracy NGS calls from those that may or may not be true remains a crucial issue. We analyzed five reference samples and over 80,000 patient specimens from two laboratories. Quality metrics were examined for approximately 200,000 NGS calls with orthogonal data, including 1662 false positives. A classification algorithm used these data to identify a battery of criteria that flag 100% of false positives as requiring confirmation (CI lower bound, 98.5% to 99.8%, depending on variant type) while minimizing the number of flagged true positives. These criteria identify false positives that the previously published criteria miss. Sampling analysis showed that smaller data sets resulted in less effective criteria. Our methodology for determining test- and laboratory-specific criteria can be generalized into a practical approach that can be used by laboratories to reduce the cost and time burdens of confirmation without affecting clinical accuracy.
Collapse
Affiliation(s)
| | | | - Chiao-Feng Lin
- Laboratory for Molecular Medicine, Partners HealthCare, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Justin M Zook
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | | | | | - Marc Salit
- National Institute of Standards and Technology, Gaithersburg, Maryland; Joint Initiative for Metrology in Biology, Stanford, California
| | - Heidi L Rehm
- Laboratory for Molecular Medicine, Partners HealthCare, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Robert L Nussbaum
- Invitae, San Francisco, California; Department of Medicine, University of California San Francisco, San Francisco, California
| | - Matthew S Lebo
- Laboratory for Molecular Medicine, Partners HealthCare, Cambridge, Massachusetts; Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
23
|
Single-Molecule Sequencing: Towards Clinical Applications. Trends Biotechnol 2019; 37:72-85. [DOI: 10.1016/j.tibtech.2018.07.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
|