1
|
Zuo P, Zhang C, Gao Y, Zhao L, Guo J, Yang Y, Yu Q, Li Y, Wang Z, Yang H. Genome-wide unraveling SNP pairwise epistatic effects associated with sheep body weight. Anim Biotechnol 2023; 34:3416-3427. [PMID: 36495095 DOI: 10.1080/10495398.2022.2152349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epistatic effects are an important part of the genetic effect of complex traits in livestock. In this study, we used 218 synthetic ewes from the Xinjiang Academy of Agricultural Reclamation in China to identify interacting paired with genome-wide single nucleotide polymorphisms (SNPs) associated with birth weight, weaning weight, and one-yearling weight. We detected 2 and 66 SNP-SNP interactions of sheep birth weight and weaning weight, respectively. No significant epistatic interaction of one-year-old body weight was detected. The genetic interaction of sheep body weight is dynamic and time-dependent. Most significant interactions of weaning body weight contributed 1% or higher. In the weaning weight trait, 66 significant SNP pairs consisted of 98 single SNPs covering 23 chromosomes, 5 of which were nonsynonymous SNPs (nsSNPs), resulting in single amino acid substitution. We found that genes that interact with transcription factors (TFs) are target genes for the corresponding TFs. Four epitron networks affecting weaning weight, including subnetworks of HIVEP3 and BACH2 transcription factors, constructed using significant SNP pairs, were also analyzed and annotated. These results suggest that transcription factors may play an important role in explaining epistatic effects. It provides a new idea to study the genetic mechanism of weight developing.
Collapse
Affiliation(s)
- Peng Zuo
- College of Science, Northeast Agricultural University, Harbin
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
| | - Chaoxin Zhang
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yupeng Gao
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- College of Engineering, Northeast Agricultural University, Harbin, China
| | - Lijunyi Zhao
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- College of Information and Electrical Engineering, Northeast Agricultural University, Harbin, China
| | - Jiaxu Guo
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yonglin Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, Hebei, China
| | - Qian Yu
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, Hebei, China
| | - Yunna Li
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zhipeng Wang
- Bioinformatics Center, Northeast Agricultural University, Harbin, China
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, Hebei, China
| | - Hua Yang
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation, Shihezi, Hebei, China
| |
Collapse
|
2
|
Du L, Chen W, Wang J, Huang L, Zheng Q, Chen J, Wang L, Cai C, Zhang X, Wang L, Zhong Q, Zhong W, Fang X, Liao Z. Beneficial Effects of Bacillus amyloliquefaciens D1 Soy Milk Supplementation on Serum Biochemical Indexes and Intestinal Health of Bearded Chickens. Microorganisms 2023; 11:1660. [PMID: 37512832 PMCID: PMC10385625 DOI: 10.3390/microorganisms11071660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of dietary supplementation with Bacillus amyloliquefaciens D1 (B. amyloliquefaciens D1) on growth performance, serum anti-inflammatory cytokines, and intestinal microbiota composition and diversity in bearded chickens. To investigate the effects of Bacillus amyloliquefaciensa and fermented soy milk, 7-day-old broilers were orally fed different doses of Bacillus amyloliquefaciens D1 fermented soy milk for 35 days, with the unfermented soy milk group as the Placebo group. This study found that B. amyloliquefaciens D1 fermented soy milk improved the intestinal microbiota of broilers, significantly increasing the abundance of beneficial bacteria and decreasing the abundance of harmful bacteria in the gut. B. amyloliquefaciens D1 fermented soy milk also significantly reduced the serum lipopolysaccharide (LPS) content. The body weight and daily weight gain of broilers were increased. In conclusion, the results of this study are promising and indicate that supplementing the diets of bearded chickens with B. amyloliquefaciens D1 fermented soy milk has many beneficial effects in terms of maintaining intestinal microbiota balance and reducing inflammation in chickens.
Collapse
Affiliation(s)
- Liyu Du
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Weizhe Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Lingzhu Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qikai Zheng
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Junjie Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Linhao Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Cai
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiangbin Zhang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Wujie Zhong
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
Zhou G, Liu T, Wang Y, Qu H, Shu D, Jia X, Luo C. Genome-Wide Association Studies Provide Insight Into the Genetic Determination for Hyperpigmentation of the Visceral Peritoneum in Broilers. Front Genet 2022; 13:820297. [PMID: 35299951 PMCID: PMC8921551 DOI: 10.3389/fgene.2022.820297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
Hyperpigmentation of the visceral peritoneum (HVP) has been becoming one of the most challenging problems in yellow-feathered chicken production, which seriously affected chicken carcass quality traits. Detecting which genes dominantly impact pigmentation in the peritoneum tissues is of great benefit to the genetic improvement of HVP. To investigate the genetic mechanism of HVP in yellow-feathered broilers, genome-wide association studies (GWASs) were conducted in the F2 generation of a cross broiler population with 395 birds. A total of 115,706 single-nucleotide polymorphisms (SNPs) of 122,415 were retained to identify quantitative trait loci (QTL) associated to HVP in chicken. The GWAS results based on the logistic mixed model (LMM) revealed that a narrow genomic location on chromosomes 1 (49.2–51.3 Mb) was significantly associated (p ≤ 4.32 × 10−7) with HVP, which contained 23 SNP makers related to 14 functional genes (MFNG, POLDIP3, POLR2F, PICK1, PDXP, SGSM3, RANGAP1, MYH9, RPL3, GALP3, LGALS1, MICALL1, ATF4, and CYP2D6). Four highly associated (p < 10−5) haplotype blocks of 0.80 kb (two SNPs), 0.06 kb (two SNPs), 0.95 kb (two SNPs), and 0.03 kb (two SNPs) were identified with two, two, four, and four distinct haplotypes, respectively. As a melanoma-associated gene, CYP2D6 were also possibly involved in the development of HVP occurring in chicken with two significant variations (rs314284996 and rs317955795) in the promoter regions. Further tests revealed that the expression of CYP2D6 was obviously higher in the visceral peritoneum tissue of chicken with HVP than that in the normal group (p < 0.05). Our results provide a novel clue to understand the genetic mechanism of HVP generation in chicken, and the mapped QTL or candidate genes might serve for genomic selection to improve carcass quality in the yellow-feathered chicken industry.
Collapse
Affiliation(s)
- Guangyuan Zhou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tianfei Liu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hao Qu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dingming Shu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xinzheng Jia
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Sciences and Engineering, Foshan University, Foshan, China
- *Correspondence: Xinzheng Jia, ; Chenglong Luo,
| | - Chenglong Luo
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- *Correspondence: Xinzheng Jia, ; Chenglong Luo,
| |
Collapse
|
4
|
Yang R, Xu Z, Wang Q, Zhu D, Bian C, Ren J, Huang Z, Zhu X, Tian Z, Wang Y, Jiang Z, Zhao Y, Zhang D, Li N, Hu X. Genome‑wide association study and genomic prediction for growth traits in yellow-plumage chicken using genotyping-by-sequencing. Genet Sel Evol 2021; 53:82. [PMID: 34706641 PMCID: PMC8555081 DOI: 10.1186/s12711-021-00672-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 09/08/2021] [Indexed: 12/25/2022] Open
Abstract
Background Growth traits are of great importance for poultry breeding and production and have been the topic of extensive investigation, with many quantitative trait loci (QTL) detected. However, due to their complex genetic background, few causative genes have been confirmed and the underlying molecular mechanisms remain unclear, thus limiting our understanding of QTL and their potential use for the genetic improvement of poultry. Therefore, deciphering the genetic architecture is a promising avenue for optimising genomic prediction strategies and exploiting genomic information for commercial breeding. The objectives of this study were to: (1) conduct a genome-wide association study to identify key genetic factors and explore the polygenicity of chicken growth traits; (2) investigate the efficiency of genomic prediction in broilers; and (3) evaluate genomic predictions that harness genomic features. Results We identified five significant QTL, including one on chromosome 4 with major effects and four on chromosomes 1, 2, 17, and 27 with minor effects, accounting for 14.5 to 34.1% and 0.2 to 2.6% of the genomic additive genetic variance, respectively, and 23.3 to 46.7% and 0.6 to 4.5% of the observed predictive accuracy of breeding values, respectively. Further analysis showed that the QTL with minor effects collectively had a considerable influence, reflecting the polygenicity of the genetic background. The accuracy of genomic best linear unbiased predictions (BLUP) was improved by 22.0 to 70.3% compared to that of the conventional pedigree-based BLUP model. The genomic feature BLUP model further improved the observed prediction accuracy by 13.8 to 15.2% compared to the genomic BLUP model. Conclusions A major QTL and four minor QTL were identified for growth traits; the remaining variance was due to QTL effects that were too small to be detected. The genomic BLUP and genomic feature BLUP models yielded considerably higher prediction accuracy compared to the pedigree-based BLUP model. This study revealed the polygenicity of growth traits in yellow-plumage chickens and demonstrated that the predictive ability can be greatly improved by using genomic information and related features. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00672-9.
Collapse
Affiliation(s)
- Ruifei Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhenqiang Xu
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400, Guangdong Province, China
| | - Qi Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Di Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Cheng Bian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Ren
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhuolin Huang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoning Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhixin Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yuzhe Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ziqin Jiang
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400, Guangdong Province, China
| | - Yiqiang Zhao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dexiang Zhang
- Wen's Nanfang Poultry Breeding Co. Ltd, Yunfu, 527400, Guangdong Province, China.
| | - Ning Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaoxiang Hu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Genome-wide association study reveals the genetic determinism of growth traits in a Gushi-Anka F 2 chicken population. Heredity (Edinb) 2020; 126:293-307. [PMID: 32989280 PMCID: PMC8026619 DOI: 10.1038/s41437-020-00365-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/18/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023] Open
Abstract
Chicken growth traits are economically important, but the relevant genetic mechanisms have not yet been elucidated. Herein, we performed a genome-wide association study to identify the variants associated with growth traits. In total, 860 chickens from a Gushi-Anka F2 resource population were phenotyped for 68 growth and carcass traits, and 768 samples were genotyped based on the genotyping-by-sequencing (GBS) method. Finally, 734 chickens and 321,314 SNPs remained after quality control and removal of the sex chromosomes, and these data were used to carry out a GWAS analysis. A total of 470 significant single-nucleotide polymorphisms (SNPs) for 43 of the 68 traits were detected and mapped on chromosomes (Chr) 1-6, -9, -10, -16, -18, -23, and -27. Of these, the significant SNPs in Chr1, -4, and -27 were found to be associated with more than 10 traits. Multiple traits shared significant SNPs, indicating that the same mutation in the region might have a large effect on multiple growth or carcass traits. Haplotype analysis revealed that SNPs within the candidate region of Chr1 presented a mosaic pattern. The significant SNPs and pathway enrichment analysis revealed that the MLNR, MED4, CAB39L, LDB2, and IGF2BP1 genes could be putative candidate genes for growth and carcass traits. The findings of this study improve our understanding of the genetic mechanisms regulating chicken growth and carcass traits and provide a theoretical basis for chicken breeding programs.
Collapse
|
6
|
Lu Z, Yue Y, Yuan C, Liu J, Chen Z, Niu C, Sun X, Zhu S, Zhao H, Guo T, Yang B. Genome-Wide Association Study of Body Weight Traits in Chinese Fine-Wool Sheep. Animals (Basel) 2020; 10:E170. [PMID: 31963922 PMCID: PMC7022301 DOI: 10.3390/ani10010170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Body weight is an important economic trait for sheep and it is vital for their successful production and breeding. Therefore, identifying the genomic regions and biological pathways that contribute to understanding variability in body weight traits is significant for selection purposes. In this study, the genome-wide associations of birth, weaning, yearling, and adult weights of 460 fine-wool sheep were determined using resequencing technology. The results showed that 113 single nucleotide polymorphisms (SNPs) reached the genome-wide significance levels for the four body weight traits and 30 genes were annotated effectively, including AADACL3, VGF, NPC1, and SERPINA12. The genes annotated by these SNPs significantly enriched 78 gene ontology terms and 25 signaling pathways, and were found to mainly participate in skeletal muscle development and lipid metabolism. These genes can be used as candidate genes for body weight in sheep, and provide useful information for the production and genomic selection of Chinese fine-wool sheep.
Collapse
Affiliation(s)
- Zengkui Lu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Yaojing Yue
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chao Yuan
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Jianbin Liu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Zhiqiang Chen
- Novogene Bioinformatics Institute, Beijing 100029, China;
| | - Chune Niu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoping Sun
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Shaohua Zhu
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Hongchang Zhao
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Tingting Guo
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Bohui Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.L.); (Y.Y.); (C.Y.); (J.L.); (C.N.); (X.S.); (S.Z.); (H.Z.)
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| |
Collapse
|