1
|
Johnston W, Adil S, Cao C, Nipu N, Mennigen JA. Fish models to explore epigenetic determinants of hypoxia-tolerance. Comp Biochem Physiol A Mol Integr Physiol 2025; 302:111811. [PMID: 39778711 DOI: 10.1016/j.cbpa.2025.111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025]
Abstract
The occurrence of environmental hypoxia in freshwater and marine aquatic systems has increased over the last century and is predicted to further increase with climate change. As members of the largest extant vertebrate group, freshwater fishes, and to a much lesser extent marine fishes, are vulnerable to increased occurrence of hypoxia. This is important as fishes render important ecosystem services and have important cultural and economic roles. Evolutionarily successful, fishes have adapted to diverse aquatic freshwater and marine habitats with different oxygen conditions. While some fishes exhibit genetic adaptions to tolerate hypoxia and even anoxia, others are limited to oxygen-rich habitats. Recent advances in molecular epigenetics have shown that some epigenetic machinery, especially histone- and DNA demethylases, is directly dependent on oxygen and modulates important transcription-regulating epigenetic marks in the process. At the post-transcriptional level, hypoxia has been shown to affect non-coding microRNA abundance. Together, this evidence adds a new molecular epigenetic basis to study hypoxia tolerance in fishes. Here, we review the documented and predicted changes in environmental hypoxia in aquatic systems and discuss the diversity and comparative physiology of hypoxia tolerance in fishes, including molecular and physiological adaptations. We then discuss how recent mechanistic advances in environmental epigenetics can inform future work probing the role of oxygen-dependent epigenetic marks in shaping organismal hypoxia-tolerance in fishes with a focus on within- and between-species variation, acclimation, inter- and multigenerational plasticity, and multiple climate-change stressors. We conclude by describing the translational potential of this approach for conservation physiology, ecotoxicology, and aquaculture.
Collapse
Affiliation(s)
- William Johnston
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Sally Adil
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Catherine Cao
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, K1N6N5, 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Ingelson-Filpula WA, Breedon SA, Storey KB. MicroRNA, Myostatin, and Metabolic Rate Depression: Skeletal Muscle Atrophy Resistance in Hibernating Myotis lucifugus. Cells 2024; 13:2074. [PMID: 39768165 PMCID: PMC11674624 DOI: 10.3390/cells13242074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Little brown bats (Myotis lucifugus) cluster in hibernacula sites over winter, in which they use metabolic rate depression (MRD) to facilitate entrance and exit of hibernation. This study used small RNA sequencing and bioinformatic analyses to identify differentially regulated microRNAs (miRNAs) and to predict their downstream effects on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms in the skeletal muscle of torpid M. lucifugus as compared to euthermic controls. We observed a subset of ten miRNAs whose expression changed during hibernation, with predicted functional roles linked to cell cycle processes, downregulation of protein degradation via ubiquitin-mediated proteolysis, downregulation of signaling pathways, including MAPK, p53, mTOR, and TGFβ, and downregulation of cytoskeletal and vesicle trafficking terms. Taken together, our results indicate miRNA regulation corresponding to both widely utilized MRD survival strategies, as well as more hibernation- and tissue-specific roles in M. lucifugus, including skeletal muscle atrophy resistance via myostatin inhibition and insulin signaling suppression.
Collapse
Affiliation(s)
- W. Aline Ingelson-Filpula
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (W.A.I.-F.); (K.B.S.)
| | - Sarah A. Breedon
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (W.A.I.-F.); (K.B.S.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada; (W.A.I.-F.); (K.B.S.)
- Institute of Biochemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
3
|
Marturano G, Carli D, Cucini C, Carapelli A, Plazzi F, Frati F, Passamonti M, Nardi F. SmithHunter: a workflow for the identification of candidate smithRNAs and their targets. BMC Bioinformatics 2024; 25:286. [PMID: 39223476 PMCID: PMC11370224 DOI: 10.1186/s12859-024-05909-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND SmithRNAs (Small MITochondrial Highly-transcribed RNAs) are a novel class of small RNA molecules that are encoded in the mitochondrial genome and regulate the expression of nuclear transcripts. Initial evidence for their existence came from the Manila clam Ruditapes philippinarum, where they have been described and whose activity has been biologically validated through RNA injection experiments. Current evidence on the existence of these RNAs in other species is based only on small RNA sequencing. As a preliminary step to characterize smithRNAs across different metazoan lineages, a dedicated, unified, analytical workflow is needed. RESULTS We propose a novel workflow specifically designed for smithRNAs. Sequence data (from small RNA sequencing) uniquely mapping to the mitochondrial genome are clustered into putative smithRNAs and prefiltered based on their abundance, presence in replicate libraries and 5' and 3' transcription boundary conservation. The surviving sequences are subsequently compared to the untranslated regions of nuclear transcripts based on seed pairing, overall match and thermodynamic stability to identify possible targets. Ample collateral information and graphics are produced to help characterize these molecules in the species of choice and guide the operator through the analysis. The workflow was tested on the original Manila clam data. Under basic settings, the results of the original study are largely replicated. The effect of additional parameter customization (clustering threshold, stringency, minimum number of replicates, seed matching) was further evaluated. CONCLUSIONS The study of smithRNAs is still in its infancy and no dedicated analytical workflow is currently available. At its core, the SmithHunter workflow builds over the bioinformatic procedure originally applied to identify candidate smithRNAs in the Manila clam. In fact, this is currently the only evidence for smithRNAs that has been biologically validated and, therefore, the elective starting point for characterizing smithRNAs in other species. The original analysis was readapted using current software implementations and some minor issues were solved. Moreover, the workflow was improved by allowing the customization of different analytical parameters, mostly focusing on stringency and the possibility of accounting for a minimal level of genetic differentiation among samples.
Collapse
Affiliation(s)
| | - Diego Carli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy.
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, 53100, Siena, Italy
- National Biodiversity Future Center (NBFC), 90133, Palermo, Italy
| |
Collapse
|
4
|
Pozzi A. Ancestry affects the transcription of small mitochondrial RNAs in human lymphocytes. Mitochondrion 2024; 77:101907. [PMID: 38777221 DOI: 10.1016/j.mito.2024.101907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/29/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Mitochondrial mutations have been linked to changes in phenotypes such as fertility or longevity, however, these changes have been often inconsistent across populations for unknown reasons. A hypothesis that could explain this inconsistency is that some still uncharacterized mitochondrial products are mediating the phenotypic changes across populations. It has been hypothesized that one such product could be the small RNAs encoded in the mitochondrial genome, thus this work will provide new evidence for their existence and function. By using data from the 1000 genome project and knowledge from previously characterized nuclear small RNAs, this study found that 10 small RNAs encoded in tRNA fragments are consistently expressed in 450 individuals from five different populations. Furthermore, this study demonstrated that the expression of some small mitochondrial RNAs is different in individuals of African ancestry, similar to what was observed before in nuclear and mitochondria mRNAs. Lastly, we investigate the causes behind these differences in expression, showing that at least one of the mt-tRFs might be regulated by TRMT10B. The analyses presented in this work further support the small mitochondrial RNAs as functional molecules, and their population-specific expression supports the hypothesis that they act as a mediator between the nucleus and mitochondria differently across populations.
Collapse
Affiliation(s)
- Andrea Pozzi
- Faculty of Biology, Ludwig-Maximilians-Universität Munich, München, Germany; Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| |
Collapse
|
5
|
Cortes S, Farhat E, Talarico G, Mennigen JA. The dynamic transcriptomic response of the goldfish brain under chronic hypoxia. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 50:101233. [PMID: 38608489 DOI: 10.1016/j.cbd.2024.101233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Oxygen is essential to fuel aerobic metabolism. Some species evolved mechanisms to tolerate periods of severe hypoxia and even anoxia in their environment. Among them, goldfish (Carassius auratus) are unique, in that they do not enter a comatose state under severely hypoxic conditions. There is thus significant interest in the field of comparative physiology to uncover the mechanistic basis underlying hypoxia tolerance in goldfish, with a particular focus on the brain. Taking advantage of the recently published and annotated goldfish genome, we profile the transcriptomic response of the goldfish brain under normoxic (21 kPa oxygen saturation) and, following gradual reduction, constant hypoxic conditions after 1 and 4 weeks (2.1 kPa oxygen saturation). In addition to analyzing differentially expressed protein-coding genes and enriched pathways, we also profile differentially expressed microRNAs (miRs). Using in silico approaches, we identify possible miR-mRNA relationships. Differentially expressed transcripts compared to normoxia were either common to both timepoints of hypoxia exposure (n = 174 mRNAs; n = 6 miRs), or exclusive to 1-week (n = 441 mRNAs; n = 23 miRs) or 4-week hypoxia exposure (n = 491 mRNAs; n = 34 miRs). Under chronic hypoxia, an increasing number of transcripts, including those of paralogous genes, was downregulated over time, suggesting a decrease in transcription. GO-terms related to the vascular system, oxidative stress, stress signalling, oxidoreductase activity, nucleotide- and intermediary metabolism, and mRNA posttranscriptional regulation were found to be enriched under chronic hypoxia. Known 'hypoxamiRs', such as miR-210-3p/5p, and miRs such as miR-29b-3p likely contribute to posttranscriptional regulation of these pathways under chronic hypoxia in the goldfish brain.
Collapse
Affiliation(s)
- S Cortes
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Laboratorio de Oncogenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico
| | - E Farhat
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada; Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ggm Talarico
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada
| | - J A Mennigen
- Department of Biology, University of Ottawa, K1N6N5 20 Marie Curie, Ottawa, ON, Canada.
| |
Collapse
|
6
|
Plazzi F, Le Cras Y, Formaggioni A, Passamonti M. Mitochondrially mediated RNA interference, a retrograde signaling system affecting nuclear gene expression. Heredity (Edinb) 2024; 132:156-161. [PMID: 37714959 PMCID: PMC10923801 DOI: 10.1038/s41437-023-00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/17/2023] Open
Abstract
Several functional classes of short noncoding RNAs are involved in manifold regulatory processes in eukaryotes, including, among the best characterized, miRNAs. One of the most intriguing regulatory networks in the eukaryotic cell is the mito-nuclear crosstalk: recently, miRNA-like elements of mitochondrial origin, called smithRNAs, were detected in a bivalve species, Ruditapes philippinarum. These RNA molecules originate in the organelle but were shown in vivo to regulate nuclear genes. Since miRNA genes evolve easily de novo with respect to protein-coding genes, in the present work we estimate the probability with which a newly arisen smithRNA finds a suitable target in the nuclear transcriptome. Simulations with transcriptomes of 12 bivalve species suggest that this probability is high and not species specific: one in a hundred million (1 × 10-8) if five mismatches between the smithRNA and the 3' mRNA are allowed, yet many more are allowed in animals. We propose that novel smithRNAs may easily evolve as exaptation of the pre-existing mitochondrial RNAs. In turn, the ability of evolving novel smithRNAs may have played a pivotal role in mito-nuclear interactions during animal evolution, including the intriguing possibility of acting as speciation trigger.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy.
| | - Youn Le Cras
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
- Magistère Européen de Génétique, Université Paris Cité, 85 Boulevard Saint Germain, 75006, Paris, Italy
| | - Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3 - 40126, Bologna, BO, Italy
| |
Collapse
|
7
|
Peng G, Zhu C, Sun Q, Li J, Chen Y, Guo Y, Ji H, Yang F, Dong W. Testicular miRNAs and tsRNAs provide insight into gene regulation during overwintering and reproduction of Onychostoma macrolepis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:481-499. [PMID: 35595880 DOI: 10.1007/s10695-022-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
The late overwintering period and breeding period are two important developmental stages of testis in Onychostoma macrolepis. Small non-coding RNAs (sncRNAs) are well-known regulators of biological processes associated with numerous biological processes. This study aimed to elucidate the roles of four sncRNA classes (microRNAs [miRNAs], Piwi-interacting RNAs [piRNAs], tRNA-derived small RNAs [tsRNAs], and rRNA-derived small RNAs [rsRNAs]) across testes in the late overwintering period (in March) and breeding period (in June) by high-throughput sequencing. The testis of O. macrolepis displayed the highest levels of piRNAs and lowest levels of rsRNAs. Compared with miRNAs and tsRNAs in June, tsRNAs in March had a higher abundance, while miRNAs in March had a much lower abundance. Bioinformatics analysis identified 1,362 and 1,340 differentially expressed miRNAs and tsRNAs, respectively. Further analysis showed that miR-200-1, miR-143-1, tRFi-Lys-CTT-1, and tRFi-Glu-CTC-1 could play critical roles during the overwintering and breeding periods. Our findings provided an unprecedented insight to reveal the epigenetic mechanism underlying the overwintering and reproduction process of male O. macrolepis.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Chao Zhu
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Jincan Li
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Yingjie Guo
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China
| | - Fangxia Yang
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- College of Forestry, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
- Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, No. 22 Xinong Road, Shaanxi, 712100, China.
| |
Collapse
|
8
|
Peng G, Sun Q, Chen Y, Wu X, Guo Y, Ji H, Yang F, Dong W. A comprehensive overview of ovarian small non-coding RNAs in the late overwintering and breeding periods of Onychostoma macrolepis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100967. [PMID: 35168176 DOI: 10.1016/j.cbd.2022.100967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The development of the ovary of Onychostoma macrolepis undergoes distinct annual cyclic changes in which small non-coding RNAs (sncRNAs) could play vital roles. In this study, four sncRNA classes in the ovary, including miRNA, piRNAs, tsRNA, and rsRNAs, were systematically profiled by high-throughput sequencing. In adult ovaries of O. macrolepis, 247 miRNAs and 235 tsRNAs were identified as differentially expressing in the late overwintering period (in March) and breeding period (in June). Some up-regulated sncRNAs in March, such as miR-125-1 and tRFi-Lys-CTT-1, could be involved in inhibiting biomolecule metabolism and enhancing stress tolerance during the overwintering period. Compared with the level expression of sncRNAs in March, some sncRNAs were up-regulated in June, such as miR-146-1 and tRFi-Gly-GCC-1, and could be involved in influencing molecular synthesis and metabolism, enhancing oocyte proliferation and maturation, accelerating ovarian development, and increasing fertilization of oocytes by regulating related target mRNAs. The results suggested that sncRNAs in the ovary of Onychostoma macrolepis not only reflect characteristics of the fish's physiology at different developmental periods, but also directly affect ovarian development and oocyte maturation during the breeding period. In conclusion, these results significantly advance our understanding of the roles of sncRNA during overwintering and reproduction periods, and provide a novel perspective for uncovering characteristics of the special overwintering ecology and reproductive physiology of an atypical cavefish.
Collapse
Affiliation(s)
- Guofan Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingfang Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yining Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaodong Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingjie Guo
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China; Biology Research Centre of Qin Mountains Wildlife, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Farhat E, Talarico GGM, Grégoire M, Weber JM, Mennigen JA. Epigenetic and post-transcriptional repression support metabolic suppression in chronically hypoxic goldfish. Sci Rep 2022; 12:5576. [PMID: 35368037 PMCID: PMC8976842 DOI: 10.1038/s41598-022-09374-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Goldfish enter a hypometabolic state to survive chronic hypoxia. We recently described tissue-specific contributions of membrane lipid composition remodeling and mitochondrial function to metabolic suppression across different goldfish tissues. However, the molecular and especially epigenetic foundations of hypoxia tolerance in goldfish under metabolic suppression are not well understood. Here we show that components of the molecular oxygen-sensing machinery are robustly activated across tissues irrespective of hypoxia duration. Induction of gene expression of enzymes involved in DNA methylation turnover and microRNA biogenesis suggest a role for epigenetic transcriptional and post-transcriptional suppression of gene expression in the hypoxia-acclimated brain. Conversely, mechanistic target of rapamycin-dependent translational machinery activity is not reduced in liver and white muscle, suggesting this pathway does not contribute to lowering cellular energy expenditure. Finally, molecular evidence supports previously reported chronic hypoxia-dependent changes in membrane cholesterol, lipid metabolism and mitochondrial function via changes in transcripts involved in cholesterol biosynthesis, β-oxidation, and mitochondrial fusion in multiple tissues. Overall, this study shows that chronic hypoxia robustly induces expression of oxygen-sensing machinery across tissues, induces repressive transcriptional and post-transcriptional epigenetic marks especially in the chronic hypoxia-acclimated brain and supports a role for membrane remodeling and mitochondrial function and dynamics in promoting metabolic suppression.
Collapse
Affiliation(s)
- Elie Farhat
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Giancarlo G M Talarico
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mélissa Grégoire
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jean-Michel Weber
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
10
|
Pozzi A, Dowling DK. New Insights into Mitochondrial-Nuclear Interactions Revealed through Analysis of Small RNAs. Genome Biol Evol 2022; 14:evac023. [PMID: 35143645 PMCID: PMC8883506 DOI: 10.1093/gbe/evac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial sequence variants affect phenotypic function, often through interaction with the nuclear genome. These "mitonuclear" interactions have been linked both to evolutionary processes and human health. The study of these interactions has focused on mechanisms regulating communication between mitochondrial and nuclear proteins; the role of mitochondrial (mt) RNAs has received little attention. Here, we show that small mt-RNAs bind to the nuclear protein Argonaute 2, and that nuclear miRNAs bind to mt-mRNAs. We identify one small mt-RNA that binds to Argonaute 2 in human tissues whose expression and sequence remain unchanged across vertebrates. Although analyses of CLEAR-CLIP sequencing data sets of human and mouse did not reveal consistent interactions between small mt-RNAs and nuclear mRNAs, we found that MT-ND4 and MT-ATP6 mRNAs are bound by different nuclear miRNAs in humans and mice. Our work homes in on previously unknown interactions between nuclear and small mt-RNAs, which may play key roles in intergenomic communication.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
11
|
Pozzi A, Dowling DK. Small mitochondrial RNAs as mediators of nuclear gene regulation, and potential implications for human health. Bioessays 2021; 43:e2000265. [PMID: 33763872 DOI: 10.1002/bies.202000265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Much research has focused on the effects of pathogenic mitochondrial mutations on health. Notwithstanding, the mechanisms regulating the link between these mutations and their effects remain elusive in several cases. Here, we propose that certain mitochondrial mutations may disrupt function of a set of mitochondrial-transcribed small RNAs, perturbing communication between mitochondria and nucleus, leading to disease. Our hypothesis synthesises two lines of supporting evidence. First, several mitochondrial mutations cannot be directly linked to effects on energy production or protein synthesis. Second, emerging studies have described the existence of small RNAs encoded by the mitochondria and proposed their involvement in RNA interference. We present a roadmap to testing this hypothesis.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Plazzi F, Puccio G, Passamonti M. HERMES: An improved method to test mitochondrial genome molecular synapomorphies among clades. Mitochondrion 2021; 58:285-295. [PMID: 33639269 DOI: 10.1016/j.mito.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/10/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Mitochondrial chromosomes have diversified among eukaryotes and many different architectures and features are now acknowledged for this genome. Here we present the improved HERMES index, which can measure and quantify the amount of molecular change experienced by mitochondrial genomes. We test the improved approach with ten molecular phylogenetic studies based on complete mitochondrial genomes, representing six bilaterian Phyla. In most cases, HERMES analysis spotted out clades or single species with peculiar molecular synapomorphies, allowing to identify phylogenetic and ecological patterns. The software presented herein handles linear, circular, and multi-chromosome genomes, thus widening the HERMES scope to the complete eukaryotic domain.
Collapse
Affiliation(s)
- Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3, 40126 Bologna, Italy.
| | - Guglielmo Puccio
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3, 40126 Bologna, Italy.
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi, 3, 40126 Bologna, Italy.
| |
Collapse
|
13
|
Weitzner EL, Fanter CE, Hindle AG. Pinniped Ontogeny as a Window into the Comparative Physiology and Genomics of Hypoxia Tolerance. Integr Comp Biol 2020; 60:1414-1424. [PMID: 32559283 DOI: 10.1093/icb/icaa083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diving physiology has received considerable scientific attention as it is a central element of the extreme phenotype of marine mammals. Many scientific discoveries have illuminated physiological mechanisms supporting diving, such as massive, internally bound oxygen stores and dramatic cardiovascular regulation. However, the cellular and molecular mechanisms that support the diving phenotype remain mostly unexplored as logistic and legal restrictions limit the extent of scientific manipulation possible. With next-generation sequencing (NGS) tools becoming more widespread and cost-effective, there are new opportunities to explore the diving phenotype. Genomic investigations come with their own challenges, particularly those including cross-species comparisons. Studying the regulatory pathways that underlie diving mammal ontogeny could provide a window into the comparative physiology of hypoxia tolerance. Specifically, in pinnipeds, which shift from terrestrial pups to elite diving adults, there is potential to characterize the transcriptional, epigenetic, and posttranslational differences between contrasting phenotypes while leveraging a common genome. Here we review the current literature detailing the maturation of the diving phenotype in pinnipeds, which has primarily been explored via biomarkers of metabolic capability including antioxidants, muscle fiber typing, and key aerobic and anaerobic metabolic enzymes. We also discuss how NGS tools have been leveraged to study phenotypic shifts within species through ontogeny, and how this approach may be applied to investigate the biochemical and physiological mechanisms that develop as pups become elite diving adults. We conclude with a specific example of the Antarctic Weddell seal by overlapping protein biomarkers with gene regulatory microRNA datasets.
Collapse
Affiliation(s)
- Emma L Weitzner
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Cornelia E Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Allyson G Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
14
|
Hadj-Moussa H, Pamenter ME, Storey KB. Hypoxic naked mole-rat brains use microRNA to coordinate hypometabolic fuels and neuroprotective defenses. J Cell Physiol 2020; 236:5080-5097. [PMID: 33305831 DOI: 10.1002/jcp.30216] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/19/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Naked mole-rats are among the mammalian champions of hypoxia tolerance. They evolved adaptations centered around reducing metabolic rate to overcome the challenges experienced in their underground burrows. In this study, we used next-generation sequencing to investigate one of the factors likely supporting hypoxia tolerance in naked mole-rat brains, posttranscriptional microRNAs (miRNAs). Of the 212 conserved miRNAs identified using small RNA sequencing, 18 displayed significant differential expression during hypoxia. Bioinformatic enrichment revealed that hypoxia-mediated miRNAs were suppressing energy expensive processes including de novo protein translation and cellular proliferation. This suppression occurred alongside the activation of neuroprotective and neuroinflammatory pathways, and the induction of central signal transduction pathways including HIF-1α and NFκB via miR-335, miR-101, and miR-155. MiRNAs also coordinated anaerobic glycolytic fuel sources, where hypoxia-upregulated miR-365 likely suppressed protein levels of ketohexokinase, the enzyme responsible for catalyzing the first committed step of fructose catabolism. This was further supported by a hypoxia-mediated reduction in glucose transporter 5 proteins that import fructose into the cell. Yet, messenger RNA and protein levels of lactate dehydrogenase, which converts pyruvate to lactate in the absence of oxygen, were elevated during hypoxia. Together, this demonstrated the induction of anaerobic glycolysis despite a lack of reliance on fructose as the primary fuel source, suggesting that hypoxic brains are metabolically different than anoxic naked mole-rat brains that were previously found to shift to fructose-based glycolysis. Our findings contribute to the growing body of oxygen-responsive miRNAs "OxymiRs" that facilitate natural miRNA-mediated mechanisms for successful hypoxic exposures.
Collapse
Affiliation(s)
| | - Matthew E Pamenter
- Biology Department, University of Ottawa, Ottawa, Ontario, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kenneth B Storey
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Zajic DE, Podrabsky JE. GABA metabolism is crucial for long-term survival of anoxia in annual killifish embryos. J Exp Biol 2020; 223:jeb229716. [PMID: 32859669 DOI: 10.1242/jeb.229716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 08/25/2023]
Abstract
In most vertebrates, a lack of oxygen quickly leads to irreparable damages to vital organs, such as the brain and heart. However, there are some vertebrates that have evolved mechanisms to survive periods of no oxygen (anoxia). The annual killifish (Austrofundulus limnaeus) survives in ephemeral ponds in the coastal deserts of Venezuela and their embryos have the remarkable ability to tolerate anoxia for months. When exposed to anoxia, embryos of A. limnaeus respond by producing significant amounts of γ-aminobutyric acid (GABA). This study aims to understand the role of GABA in supporting the metabolic response to anoxia. To explore this, we investigated four developmentally distinct stages of A. limnaeus embryos that vary in their anoxia tolerance. We measured GABA and lactate concentrations across development in response to anoxia and aerobic recovery. We then inhibited enzymes responsible for the production and degradation of GABA and observed GABA and lactate concentrations, as well as embryo mortality. Here, we show for the first time that GABA metabolism affects anoxia tolerance in A. limnaeus embryos. Inhibition of enzymes responsible for GABA production (glutamate decarboxylase) and degradation (GABA-transaminase and succinic acid semialdehyde dehydrogenase) led to increased mortality, supporting a role for GABA as an intermediate product and not a metabolic end-product. We propose multiple roles for GABA during anoxia and aerobic recovery in A. limnaeus embryos, serving as a neurotransmitter, an energy source, and an anti-oxidant.
Collapse
Affiliation(s)
- Daniel E Zajic
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
- Health, Human Performance, and Athletics Department, Linfield University, 900 SE Baker, McMinnville, OR 97128, USA
| | - Jason E Podrabsky
- Department of Biology, Portland State University, PO Box 751, Portland, OR 97207, USA
| |
Collapse
|
16
|
Hadj-Moussa H, Storey KB. The OxymiR response to oxygen limitation: a comparative microRNA perspective. J Exp Biol 2020; 223:223/10/jeb204594. [DOI: 10.1242/jeb.204594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ABSTRACT
From squid at the bottom of the ocean to humans at the top of mountains, animals have adapted to diverse oxygen-limited environments. Surviving these challenging conditions requires global metabolic reorganization that is orchestrated, in part, by microRNAs that can rapidly and reversibly target all biological functions. Herein, we review the involvement of microRNAs in natural models of anoxia and hypoxia tolerance, with a focus on the involvement of oxygen-responsive microRNAs (OxymiRs) in coordinating the metabolic rate depression that allows animals to tolerate reduced oxygen levels. We begin by discussing animals that experience acute or chronic periods of oxygen deprivation at the ocean's oxygen minimum zone and go on to consider more elevated environments, up to mountain plateaus over 3500 m above sea level. We highlight the commonalities and differences between OxymiR responses of over 20 diverse animal species, including invertebrates and vertebrates. This is followed by a discussion of the OxymiR adaptations, and maladaptations, present in hypoxic high-altitude environments where animals, including humans, do not enter hypometabolic states in response to hypoxia. Comparing the OxymiR responses of evolutionarily disparate animals from diverse environments allows us to identify species-specific and convergent microRNA responses, such as miR-210 regulation. However, it also sheds light on the lack of a single unified response to oxygen limitation. Characterizing OxymiRs will help us to understand their protective roles and raises the question of whether they can be exploited to alleviate the pathogenesis of ischemic insults and boost recovery. This Review takes a comparative approach to addressing such possibilities.
Collapse
Affiliation(s)
- Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, Ottawa, ON, Canada, K1S 5B6
| |
Collapse
|
17
|
Lucentini L, Plazzi F, Sfriso AA, Pizzirani C, Sfriso A, Chiesa S. Additional taxonomic coverage of the doubly uniparental inheritance in bivalves: Evidence of sex‐linked heteroplasmy in the razor clam
Solen marginatus
Pulteney, 1799, but not in the lagoon cockle
Cerastoderma glaucum
(Bruguière, 1789). J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Livia Lucentini
- Department of Chemistry, Biology and Biotechnologies University of Perugia Perugia Italy
| | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences University of Bologna Bologna Italy
| | - Andrea Augusto Sfriso
- Department of Chemical and Pharmaceuticals Sciences University of Ferrara Ferrara Italy
| | - Claudia Pizzirani
- Department of Chemistry, Biology and Biotechnologies University of Perugia Perugia Italy
| | - Adriano Sfriso
- Department of Environmental Sciences, Informatics and Statistics Ca' Foscari University of Venice Venice Italy
| | - Stefania Chiesa
- Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Venice Italy
- ISPRA Institute for Environmental Protection and Research Rome Italy
| |
Collapse
|
18
|
Penso-Dolfin L, Haerty W, Hindle A, Di Palma F. microRNA profiling in the Weddell seal suggests novel regulatory mechanisms contributing to diving adaptation. BMC Genomics 2020; 21:303. [PMID: 32293246 PMCID: PMC7158035 DOI: 10.1186/s12864-020-6675-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background The Weddell Seal (Leptonychotes weddelli) represents a remarkable example of adaptation to diving among marine mammals. This species is capable of diving > 900 m deep and remaining underwater for more than 60 min. A number of key physiological specializations have been identified, including the low levels of aerobic, lipid-based metabolism under hypoxia, significant increase in oxygen storage in blood and muscle; high blood volume and extreme cardiovascular control. These adaptations have been linked to increased abundance of key proteins, suggesting an important, yet still understudied role for gene reprogramming. In this study, we investigate the possibility that post-transcriptional gene regulation by microRNAs (miRNAs) has contributed to the adaptive evolution of diving capacities in the Weddell Seal. Results Using small RNA data across 4 tissues (brain, heart, muscle and plasma), in 3 biological replicates, we generate the first miRNA annotation in this species, consisting of 559 high confidence, manually curated miRNA loci. Evolutionary analyses of miRNA gain and loss highlight a high number of Weddell seal specific miRNAs. Four hundred sixteen miRNAs were differentially expressed (DE) among tissues, whereas 80 miRNAs were differentially expressed (DE) across all tissues between pups and adults and age differences for specific tissues were detected in 188 miRNAs. mRNA targets of these altered miRNAs identify possible protective mechanisms in individual tissues, particularly relevant to hypoxia tolerance, anti-apoptotic pathways, and nitric oxide signal transduction. Novel, lineage-specific miRNAs associated with developmental changes target genes with roles in angiogenesis and vasoregulatory signaling. Conclusions Altogether, we provide an overview of miRNA composition and evolution in the Weddell seal, and the first insights into their possible role in the specialization to diving.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Allyson Hindle
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,University of Nevada Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| |
Collapse
|
19
|
Passamonti M, Plazzi F. Doubly Uniparental Inheritance and beyond: The contribution of the Manila clamRuditapes philippinarum. J ZOOL SYST EVOL RES 2020. [DOI: 10.1111/jzs.12371] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences University of Bologna Bologna Italy
| |
Collapse
|
20
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
21
|
Reynolds JA. Noncoding RNA Regulation of Dormant States in Evolutionarily Diverse Animals. THE BIOLOGICAL BULLETIN 2019; 237:192-209. [PMID: 31714856 DOI: 10.1086/705484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dormancy is evolutionarily widespread and can take many forms, including diapause, dauer formation, estivation, and hibernation. Each type of dormancy is characterized by distinct features; but accumulating evidence suggests that each is regulated by some common processes, often referred to as a common "toolkit" of regulatory mechanisms, that likely include noncoding RNAs that regulate gene expression. Noncoding RNAs, especially microRNAs, are well-known regulators of biological processes associated with numerous dormancy-related processes, including cell cycle progression, cell growth and proliferation, developmental timing, metabolism, and environmental stress tolerance. This review provides a summary of our current understanding of noncoding RNAs and their involvement in regulating dormancy.
Collapse
|
22
|
Haack F, Trakooljul N, Gley K, Murani E, Hadlich F, Wimmers K, Ponsuksili S. Deep sequencing of small non-coding RNA highlights brain-specific expression patterns and RNA cleavage. RNA Biol 2019; 16:1764-1774. [PMID: 31432767 DOI: 10.1080/15476286.2019.1657743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With the advance of high-throughput sequencing technology numerous new regulatory small RNAs have been identified, that broaden the variety of processing mechanisms and functions of non-coding RNA. Here we explore small non-coding RNA (sncRNA) expression in central parts of the physiological stress and anxiety response system. Therefore, we characterize the sncRNA profile of tissue samples from Amygdala, Hippocampus, Hypothalamus and Adrenal Gland, obtained from 20 pigs. Our analysis reveals that all tissues but Amygdala and Hippocampus possess distinct, tissue-specific expression pattern of miRNA that are associated with Hypoxia, stress responses as well as memory and fear conditioning. In particular, we observe marked differences in the expression profile of limbic tissues compared to those associated to the HPA/stress axis, with a surprisingly high aggregation of 3´-tRNA halves in Amygdala and Hippocampus. Since regulation of sncRNA and RNA cleavage plays a pivotal role in the central nervous system, our work provides seminal insights in the role/involvement of sncRNA in the transcriptional and post-transcriptional regulation of negative emotion, stress and coping behaviour in pigs, and mammals in general.
Collapse
Affiliation(s)
- Fiete Haack
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Nares Trakooljul
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Kevin Gley
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Eduard Murani
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Frieder Hadlich
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Klaus Wimmers
- Institute for Genome Biology, Genomics Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, Rostock, Germany
| | - Siriluck Ponsuksili
- Institute for Genome Biology, Functional Genome Analysis Research Unit, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
23
|
Pozzi A, Dowling DK. The Genomic Origins of Small Mitochondrial RNAs: Are They Transcribed by the Mitochondrial DNA or by Mitochondrial Pseudogenes within the Nucleus (NUMTs)? Genome Biol Evol 2019; 11:1883-1896. [PMID: 31218347 PMCID: PMC6619488 DOI: 10.1093/gbe/evz132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Several studies have linked mitochondrial genetic variation to phenotypic modifications; albeit the identity of the mitochondrial polymorphisms involved remains elusive. The search for these polymorphisms led to the discovery of small noncoding RNAs, which appear to be transcribed by the mitochondrial DNA ("small mitochondrial RNAs"). This contention is, however, controversial because the nuclear genome of most animals harbors mitochondrial pseudogenes (NUMTs) of identical sequence to regions of mtDNA, which could alternatively represent the source of these RNAs. To discern the likely contributions of the mitochondrial and nuclear genome to transcribing these small mitochondrial RNAs, we leverage data from six vertebrate species exhibiting markedly different levels of NUMT sequence. We explore whether abundances of small mitochondrial RNAs are associated with levels of NUMT sequence across species, or differences in tissue-specific mtDNA content within species. Evidence for the former would support the hypothesis these RNAs are primarily transcribed by NUMT sequence, whereas evidence for the latter would provide strong evidence for the counter hypothesis that these RNAs are transcribed directly by the mtDNA. No association exists between the abundance of small mitochondrial RNAs and NUMT levels across species. Moreover, a sizable proportion of transcripts map exclusively to the mtDNA sequence, even in species with highest NUMT levels. Conversely, tissue-specific abundances of small mitochondrial RNAs are strongly associated with the mtDNA content. These results support the hypothesis that small mitochondrial RNAs are primarily transcribed by the mitochondrial genome and that this capacity is conserved across Amniota and, most likely, across most metazoan lineages.
Collapse
Affiliation(s)
- Andrea Pozzi
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Ma Q, Zhang L, Pearce WJ. MicroRNAs in brain development and cerebrovascular pathophysiology. Am J Physiol Cell Physiol 2019; 317:C3-C19. [PMID: 30840494 DOI: 10.1152/ajpcell.00022.2019] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) are a class of highly conserved non-coding RNAs with 21-25 nucleotides in length and play an important role in regulating gene expression at the posttranscriptional level via base-paring with complementary sequences of the 3'-untranslated region of the target gene mRNA, leading to either transcript degradation or translation inhibition. Brain-enriched miRNAs act as versatile regulators of brain development and function, including neural lineage and subtype determination, neurogenesis, synapse formation and plasticity, neural stem cell proliferation and differentiation, and responses to insults. Herein, we summarize the current knowledge regarding the role of miRNAs in brain development and cerebrovascular pathophysiology. We review recent progress of the miRNA-based mechanisms in neuronal and cerebrovascular development as well as their role in hypoxic-ischemic brain injury. These findings hold great promise, not just for deeper understanding of basic brain biology but also for building new therapeutic strategies for prevention and treatment of pathologies such as cerebral ischemia.
Collapse
Affiliation(s)
- Qingyi Ma
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| | - William J Pearce
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine , Loma Linda, California
| |
Collapse
|
25
|
Stillman JH. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology (Bethesda) 2019; 34:86-100. [DOI: 10.1152/physiol.00040.2018] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A consequence of climate change is the increased frequency and severity of extreme heat waves. This is occurring now as most of the warmest summers and most intense heat waves ever recorded have been during the past decade. In this review, I describe the ways in which animals and human populations are likely to respond to increased extreme heat, suggest how to study those responses, and reflect on the importance of those studies for countering the devastating impacts of climate change.
Collapse
Affiliation(s)
- Jonathon H. Stillman
- Estuary and Ocean Science Center and Department of Biology, San Francisco State University, San Francisco, California
| |
Collapse
|
26
|
Riggs CL, Le R, Kültz D, Zajic D, Summers A, Alvarez L, Podrabsky JE. Establishment and characterization of an anoxia-tolerant cell line, PSU-AL-WS40NE, derived from an embryo of the annual killifish Austrofundulus limnaeus. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:11-22. [PMID: 30802492 DOI: 10.1016/j.cbpb.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 01/12/2023]
Abstract
Most animal cells rely on aerobic metabolism for survival and are damaged or die within minutes without oxygen. Embryos of the annual killifish Austrofundulus limnaeus, however, survive months without oxygen. Determining how their cells survive without oxygen has the potential to revolutionize our understanding of the cellular mechanisms supporting vertebrate anoxia tolerance and the evolution of such tolerance. Therefore, we aimed to establish and characterize an anoxia-tolerant cell line from A. limnaeus for investigating mechanisms of vertebrate anoxia tolerance. The PSU-AL-WS40NE cell line of neuroepithelial identity was established from embryonic tissue of A. limnaeus using a tissue explant. The cells can survive for at least 49 d without oxygen or replenishment of growth medium, compared to only 3 d of anoxic survival for two mammalian cell lines. PSU-AL-WS40NE cells accumulate lactate during anoxia, indicating use of common metabolic pathways for anaerobic metabolism. Additionally, they express many of the same small noncoding RNAs that are stress-responsive in whole embryos of A. limnaeus and mammalian cells, as well as anoxia-responsive small noncoding RNAs derived from the mitochondrial genome (mitosRNAs). The establishment of the cell line provides a unique tool for investigating cellular mechanisms of vertebrate anoxia tolerance, and has the potential to transform our understanding of the role of oxidative metabolism in cell biology.
Collapse
Affiliation(s)
- Claire L Riggs
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Biology, Saint Louis University, 1 N. Grand Blvd., St. Louis, MO 63103, United States of America.
| | - Rosey Le
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Pkwy., Las Vegas, NV 89154, United States of America
| | - Dietmar Kültz
- Department of Animal Science, University of California, One Shields Ave., Davis, CA 95616, United States of America
| | - Daniel Zajic
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| | - Amanda Summers
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America; Department of Psychological and Brain Sciences, Villanova University, 800 E. Lancaster Ave., Villanova, PA 19085, United States of America
| | - Luz Alvarez
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| | - Jason E Podrabsky
- Department of Biology, Portland State University, P.O. Box 751, Portland, OR 97207, United States of America
| |
Collapse
|