1
|
Das S, Sharma C, Yadav T, Dubey K, Shekhar S, Singh P, Singh K, Gothwal M, Jhirwal M, Shekhawat DS. Absent or hypoplastic nasal bone: What to tell the prospective parents? Birth Defects Res 2024; 116:e2348. [PMID: 38801241 DOI: 10.1002/bdr2.2348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Absent or hypoplastic nasal bone (AHNB) on first or second-trimester ultrasonography (USG) is an important soft marker of Down syndrome. However, due to its varied incidence in euploid and aneuploid fetuses, there is always a dilemma of whether to go for invasive fetal testing for isolated AHNB. This study aims to assess outcomes specifically within the context of Indian ethnicity women. MATERIALS AND METHODS This was a prospective observational study. All patients who reported with AHNB in the first- or second-trimester USG were included. Genetic counseling was done, and noninvasive and invasive testing was offered. Chromosomal anomalies were meticulously recorded, and pregnancy was monitored. RESULTS The incidence of AHNB in our study was 1.16% (47/4051). Out of 47 women with AHNB, the isolated condition was seen in 32 (0.78%) cases, while AHNB with structural anomalies was seen in nine cases (0.22%). Thirty-nine women opted for invasive testing. Six out of 47 had aneuploidy (12.7%), while two euploid cases (4.25%) developed nonimmune hydrops. The prevalence of Down syndrome in fetuses with AHNB was 8.5% (4/47) and 0.42% (17/4004) in fetuses with nasal bone present. This difference was statistically significant (p = .001). CONCLUSION The results indicate that isolated AHNB cases should be followed by a comprehensive anomaly scan rather than immediately recommending invasive testing. However, invasive testing is required when AHNB is associated with other soft markers or abnormalities. As chromosomal microarray is more sensitive than standard karyotype in detecting chromosomal aberrations, it should be chosen over karyotype.
Collapse
Affiliation(s)
- Shreya Das
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Charu Sharma
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Taruna Yadav
- Department of Diagnostic and Interventional Radiology, All India Institute of Medical Sciences, Jodhpur, India
| | - Kalika Dubey
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Shashank Shekhar
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Pratibha Singh
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Kuldeep Singh
- Department of Pediatrics, All India Institute of Medical Sciences, Jodhpur, India
| | - Meenakshi Gothwal
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | - Manisha Jhirwal
- Department of Obstetrics & Gynecology, All India Institute of Medical Sciences, Jodhpur, India
| | | |
Collapse
|
2
|
Bourgois A, Bizaoui V, Colson C, Vincent-Devulder A, Molin A, Gérard M, Gruchy N. Phenotypic and genotypic characterization of 1q21.1 copy number variants: A report of 34 new individuals and literature review. Am J Med Genet A 2024; 194:e63457. [PMID: 37881147 DOI: 10.1002/ajmg.a.63457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Recurrent 1q21.1 copy number variants (CNVs) have been associated with a wide spectrum of clinical features, ranging from normal phenotype to moderate intellectual disability, with congenital anomalies and dysmorphic features. They are often inherited from unaffected parents and the pathogenicity is difficult to assess. We describe the phenotypic and genotypic data for 34 probands carrying CNVs in the 1q21.1 chromosome region (24 duplications, 8 deletions and 2 triplications). We also reviewed 89 duplications, 114 deletions and 5 triplications described in the literature, at variable 1q21.1 locations. We aimed to identify the most highly associated clinical features to determine the phenotypic expression in affected individuals. Developmental delay or learning disabilities and neuropsychiatric disorders were common in patients with deletions, duplications and triplications of 1q21.1. Mild dysmorphic features common in these CNVs include a prominent forehead, widely spaced eyes and a broad nose. The CNVs were mostly inherited from apparently unaffected parents. Almost half of the CNVs were distal, overlapping with a common minimal region of 1.2 Mb. We delineated the clinical implications of 1q21.1 CNVs and confirmed that these CNVs are likely pathogenic, although subject to incomplete penetrance and variable expressivity. Long-term follow-up should be performed to each newly diagnosed case, and prenatal genetic counseling cautiously discussed, as it remains difficult to predict the phenotype in the event of an antenatal diagnosis.
Collapse
Affiliation(s)
- Alexia Bourgois
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | | | - Cindy Colson
- CHU Lille, University of Lille, EA7364, Lille, France
| | - Aline Vincent-Devulder
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Arnaud Molin
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Marion Gérard
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| | - Nicolas Gruchy
- Normandy University, UNICAEN, Caen University Hospital, Department of Genetics, UR 7450 BioTARGen, FHU G4 Genomics, Caen, France
| |
Collapse
|
3
|
Yue F, Yang X, Jiang Y, Li S, Liu R, Zhang H. Prenatal phenotypes and pregnancy outcomes of fetuses with recurrent 1q21.1 microdeletions and microduplications. Front Med (Lausanne) 2023; 10:1207891. [PMID: 37692779 PMCID: PMC10484100 DOI: 10.3389/fmed.2023.1207891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Objective Chromosomal 1q21.1 deletions and duplications are genomic disorders that are usually diagnosed postnatally. However, the genotype-phenotype correlations of 1q21.1 copy number variants (CNVs) during the prenatal period are still not clear. This study aimed to provide a systematic summary of prenatal phenotypes for such genomic disorders. Methods In total, 26 prenatal amniotic fluid samples diagnosed with 1q21.1 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed for all cases simultaneously. The pregnancy outcomes and health conditions after birth in all cases were followed up. Meanwhile, prenatal cases with 1q21.1 microdeletions or microduplications in the literature were retrospectively collected. Results In total, 11 pregnancies (11/8,252, 0.13%) with 1q21.1 microdeletions and 15 (15/8,252, 0.18%) with 1q21.1 microduplications were identified. Among these 1q21.1 CNVs, 4 cases covered the thrombocytopenia-absent radius (TAR) region, 16 cases covered the 1q21.1 recurrent microdeletion/microduplication region, and 6 cases covered all regions mentioned above. The prenatal abnormal ultrasound findings were recorded in four participants with 1q21.1 deletions and seven participants with 1q21.1 duplications. Finally, three cases with 1q21.1 deletions and five with 1q21.1 duplications terminated their pregnancies. Conclusion In the prenatal setting, 1q21.1 microdeletions were associated with increased nuchal translucency (NT), anomalies of the urinary system, and cardiovascular abnormalities, while 1q21.1 microduplications were correlated with cardiovascular malformations, nasal bone dysplasia, and increased NT. In addition, cerebral ventriculomegaly might be correlated with 1q21.1 microduplications. Considering the variable expressivity and incomplete penetrance of 1q21.1 CNVs, long-term follow-up after birth should be carried out in these cases.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Xiao Yang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Shibo Li
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
4
|
Shi X, Lu J, Li L, Wei R, Wu J. Prenatal chromosomal microarray analysis in foetuses with isolated absent or hypoplastic nasal bone. Ann Med 2022; 54:1297-1302. [PMID: 35506821 PMCID: PMC9090372 DOI: 10.1080/07853890.2022.2070271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES To evaluate the efficiency of chromosomal microarray analysis (CMA) in the prenatal diagnosis of foetuses with isolated absent or hypoplastic nasal bone (NB) in the first and second trimester. METHODS From January 2015 to April 2021, foetuses with isolated absent or hypoplastic NB who received invasive prenatal diagnosis were enrolled. The results of CMA were analysed. RESULTS There were 221 foetuses, including 166 cases with isolated absent NB and 55 cases with isolated hypoplastic NB. Twenty-four foetuses (10.9%, 24/221) had an ultrasonic diagnosis in the first trimester and 197 (89.1%, 197/221) had a ultrasonic diagnosis in the second trimester. The overall diagnostic yield of CMA was 9.0% (20/221). Aneuploidies were detected in 13 (5.9%, 13/221) foetuses, including 10 Down syndrome, 2 Klinefelter's syndrome and 1 trisomy 18. Pathogenic copy number variations (CNVs) were detected in seven foetuses (3.2%, 7/221). In addition, variants of unknown significance (VOUS) were detected in four foetuses. The foetuses with isolated absent NB had a higher detection rate of chromosome abnormality than the isolated hypoplastic NB, but the difference was not significant in the statistical analysis (10.2% vs. 5.5%, χ2 =0.642, p = .423). No significant difference was observed in the detection rate between the first trimester and the second trimester (16.6% vs. 8.1%, χ2 = 1.002, p = .317, Chi-square test). CONCLUSION CMA can increase the diagnostic yield of chromosome abnormality, especially pathogenic CNVs for foetuses with isolated absent or hypoplastic NB. CMA should be recommended when isolated absent or hypoplastic NB is suspected antenatally.7.
Collapse
Affiliation(s)
- Xiaomei Shi
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jian Lu
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ling Li
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Ran Wei
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Jing Wu
- Genetic Medical Center, Guangdong Women and Children Hospital, Guangzhou, China
| |
Collapse
|
5
|
Wen X, Xing H, Qi K, Wang H, Li X, Zhu J, Chen W, Cui L, Zhang J, Qi H. Analysis of 17 Prenatal Cases with the Chromosomal 1q21.1 Copy Number Variation. DISEASE MARKERS 2022; 2022:5487452. [PMID: 37284664 PMCID: PMC10241571 DOI: 10.1155/2022/5487452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/12/2022] [Indexed: 10/10/2023]
Abstract
Copy number variations (CNVs) at the chromosomal 1q21.1 region represent a group of hot-spot recurrent rearrangements in human genome, which have been detected in hundreds of patients with variable clinical manifestations. Yet, report of such CNVs in prenatal scenario was relatively scattered. In this study, 17 prenatal cases involving the 1q21.1 microdeletion or duplication were recruited. The clinical survey and imaging examination were performed; and genetic detection with karyotyping and CNV analysis using chromosomal microarray (CMA) or CNVseq were subsequently carried out. These cases were all positive with 1q21.1 CNV, yet presented with exceedingly various clinical and utrasonographic indications. Among them, 12 pregnancies carried 1q21.1 deletions, while the other 5 carried 1q21.1 duplications, all of which were within the previously defined breaking point (BP) regions. According to the verification results, 9 CNVs were de novo, 7 were familial, and the other 1 was not certain. We summarized the clinical information of these cases, and the size and distribution of CNVs, and attempted to analyze the association between these two aspects. The findings in our study may provide important basis for the prenatal diagnosis and genetic counseling on such conditions in the future.
Collapse
Affiliation(s)
- Xiaohui Wen
- Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Huanxia Xing
- Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei, China
| | - Keyan Qi
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hao Wang
- Prenatal Diagnosis Center, Hangzhou Women's Hospital, Hangzhou, Zhejiang, China
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaojun Li
- Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Jianjiang Zhu
- Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| | - Wenqi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei, China
| | - Limin Cui
- Prenatal Diagnosis Center, Langfang Maternal and Child Health Care Hospital, Langfang, Hebei, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Shijiazhuang, Hebei, China
| | - Hong Qi
- Prenatal Diagnosis Center, Haidian Maternal and Child Health Care Hospital, Beijing, China
| |
Collapse
|
6
|
Zhang H, Yue F, Zhang X, He J, Jiang Y, Liu R, Yu Y. Prenatal detection of distal 1q21.1q21.2 microduplication with abnormal ultrasound findings: Two cases report and literature review. Medicine (Baltimore) 2021; 100:e24227. [PMID: 33429818 PMCID: PMC7793324 DOI: 10.1097/md.0000000000024227] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/17/2020] [Indexed: 01/05/2023] Open
Abstract
RATIONALE 1q21.1 duplication is an uncommon chromosomal submicroscopic imbalance which is associated with growth/mental retardation, dysmorphic features, autism, multiple congenital and neuropsychiatric disorders. PATIENT CONCERNS Two pregnant women underwent amniocentesis for cytogenetic analysis and chromosomal microarray analysis (CMA) following abnormal ultrasound findings. Case 1 presented short nasal bone and case 2 showed absent nasal bone, ventricular septal defect and umbilical cord circling in ultrasonic examination. DIAGNOSES G-banding analysis showed that the two fetuses presented normal karyotypic results while CMA detected 1.796 Mb (case 1) and 1.242 Mb (case 2) microduplications in the region of 1q21.1q21.2 separately. Furthermore, the CMA also revealed a 1.2 Mb microdeletion of 8p23.3 in case 1. INTERVENTIONS The couple in case 1 chose to terminate the pregnancy, while the couple in case 2 continued the pregnancy and finally delivered a male infant who presented low nasal bridge and ventricular septal defect. OUTCOMES The 1q21.1q21.2 duplications in our report were located in the distal 1q21.1 region, overlapping with 1q21.1 duplication syndrome. Case 2 was the first reported live birth with 1q21.1 duplication according to prenatal CMA detection in China. LESSONS The genotype-phenotype of 1q21.1 duplication is complicated due to the phenotypic diversity, incomplete penetrance, and lack of obvious characteristics. So it is difficult to predict the postnatal development and health conditions clinically. Hence, long term follow up is necessary for newborn infants with 1q21.1 duplication, irrespective of whether the duplication is de novo or inherited.
Collapse
Affiliation(s)
- Hongguo Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Fagui Yue
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Xinyue Zhang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Jing He
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yuting Jiang
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Ruizhi Liu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| | - Yang Yu
- Center for Reproductive Medicine, Center for Prenatal Diagnosis, First Hospital
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, China
| |
Collapse
|
7
|
Pasternak Y, Singer A, Maya I, Sagi-Dain L, Ben-Shachar S, Khayat M, Greenbaum L, Feingold-Zadok M, Zeligson S, Sukenik Halevy R. The yield of chromosomal microarray testing for cases of abnormal fetal head circumference. J Perinat Med 2020; 48:553-558. [PMID: 32721143 DOI: 10.1515/jpm-2020-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Chromosomal microarray analysis (CMA) is the method of choice for genetic work-up in cases of fetal malformations. We assessed the detection rate of CMA in cases of abnormal fetal head circumference (HC). METHODS The study cohort was based on 81 cases of amniocenteses performed throughout Israel for the indication of microcephaly (53) or macrocephaly (28), from January 2015 through December 2018. We retrieved data regarding the clinical background, parental HCs and work-up during the pregnancy from genetic counseling summaries and from patients' medical records. RESULTS There was only one likely pathogenic CMA result (1.89%): a 400-kb microdeletion at 16p13.3 detected in a case of isolated microcephaly. No pathogenic results were found in the macrocephaly group. Most fetuses with microcephaly were female (87.8%), while the majority with macrocephaly were males (86.4%). CONCLUSIONS The results imply that CMA analysis in pregnancies with microcephaly may carry a small yield compared to other indications. Regarding macrocephaly, our cohort was too small to draw conclusions. In light of the significant gender effect on the diagnosis of abnormal HC, standardization of fetal HC charts according to fetal gender may normalize cases that were categorized outside the normal range and may increase the yield of CMA for cases of abnormal HC.
Collapse
Affiliation(s)
- Yael Pasternak
- Department of Obstetrics and Gynecology, Meir Medical Center, Kfar Saba, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amihood Singer
- Community Genetics, Public Health Services, Ministry of Health, Jerusalem, Israel
| | - Idit Maya
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| | - Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Ben-Shachar
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Genetics Institute, Sorasky Medical Center, Tel Aviv, Israel
| | - Morad Khayat
- Institute of Human Genetics, Haemek Medical Center, Afula, Israel
| | - Lior Greenbaum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel; and The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Sharon Zeligson
- Medical Genetics Institute, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Rivka Sukenik Halevy
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Recanati Genetic Institute, Rabin Medical Center, Petah Tikva, Israel
| |
Collapse
|