1
|
Yu J, Zhang Y, Zhu H. Pleiotropic effects of cell competition between normal and transformed cells in mammalian cancers. J Cancer Res Clin Oncol 2023; 149:1607-1619. [PMID: 35796779 PMCID: PMC9261164 DOI: 10.1007/s00432-022-04143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE In the course of tumor progression, cancer clones interact with host normal cells, and these interactions make them under selection pressure all the time. Cell competition, which can eliminate suboptimal cells and optimize organ development via comparison of cell fitness information, is found to take place between host cells and transformed cells in mammals and play important roles in different phases of tumor progression. The aim of this study is to summarize the current knowledge about the roles and corresponding mechanisms of different cell competition interactions between host normal cells and transformed cells involved in mammalian tumor development. METHODS We reviewed the published relevant articles in the Pubmed. RESULTS So far, the role of several cell competition interactions have been well described in the different phases of mammalian tumor genesis and development. While cell competitions for trophic factors and epithelial defense against cancer (EDAC) prevent the emergence of transformed cells and suppress carcinogenesis, fitness-fingerprints-comparison system and Myc supercompetitors promote the local expansion of transformed cells after the early tumor lesion is formatted. In addition, various preclinical tumor-suppression models which based on the molecular mechanisms of these competition interactions show potential clinical value of boosting the fitness of host normal cells. CONCLUSION Cell competition between host and transformed cells has pleiotropic effects in mammalian tumor genesis and development. The clarification of specific molecular mechanisms shed light on novel ideas for the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Jing Yu
- Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yamin Zhang
- Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Sollazzo M, Paglia S, Di Giacomo S, Grifoni D. Apoptosis inhibition restrains primary malignant traits in different Drosophila cancer models. Front Cell Dev Biol 2023; 10:1043630. [PMID: 36704198 PMCID: PMC9871239 DOI: 10.3389/fcell.2022.1043630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
Tumor cells exploit multiple mechanisms to evade apoptosis, hence the strategies aimed at reactivating cell death in cancer. However, recent studies are revealing that dying cells play remarkable pro-oncogenic roles. Among the mechanisms promoting cell death, cell competition, elicited by disparities in MYC activity in confronting cells, plays the primary role of assuring tissue robustness during development from Drosophila to mammals: cells with high MYC levels (winners) overproliferate while killing suboptimal neighbors (losers), whose death is essential to process completion. This mechanism is coopted by tumor cells in cancer initiation, where host cells succumb to high-MYC-expressing precancerous neighbors. Also in this case, inhibition of cell death restrains aberrant cell competition and rescues tissue structure. Inhibition of apoptosis may thus emerge as a good strategy to counteract cancer progression in competitive contexts; of note, we recently found a positive correlation between cell death amount at the tumor/stroma interface and MYC levels in human cancers. Here we used Drosophila to investigate the functional role of competition-dependent apoptosis in advanced cancers, observing dramatic changes in mass dimensions and composition following a boost in cell competition, rescued by apoptosis inhibition. This suggests the role of competition-dependent apoptosis be not confined to the early stages of tumorigenesis. We also show that apoptosis inhibition, beside restricting cancer mass, is sufficient to rescue tissue architecture and counteract cell migration in various cancer contexts, suggesting that a strong activation of the apoptotic pathways intensifies cancer burden by affecting distinct phenotypic traits at different stages of the disease.
Collapse
Affiliation(s)
- Manuela Sollazzo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simona Paglia
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Simone Di Giacomo
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Daniela Grifoni
- CanceЯEvolutionLab, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy,CanceЯEvolutionLab, Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,*Correspondence: Daniela Grifoni,
| |
Collapse
|
3
|
Marx OM, Mankarious MM, Eshelman MA, Ding W, Koltun WA, Yochum GS. Transcriptome Analyses Identify Deregulated MYC in Early Onset Colorectal Cancer. Biomolecules 2022; 12:1223. [PMID: 36139061 PMCID: PMC9496520 DOI: 10.3390/biom12091223] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Despite a global decrease in colorectal cancer (CRC) incidence, the prevalence of early-onset colorectal cancer (EOCRC), or those occurring in individuals before the age of 50, has steadily increased over the past several decades. When compared to later onset colorectal cancer (LOCRC) in individuals over 50, our understanding of the genetic and molecular underpinnings of EOCRCs is limited. Here, we conducted transcriptomic analyses of patient-matched normal colonic segments and tumors to identify gene expression programs involved in carcinogenesis. Amongst differentially expressed genes, we found increased expression of the c-MYC proto-oncogene (MYC) and its downstream targets in tumor samples. We identified tumors with high and low differential MYC expression and found patients with high-MYC tumors were older and overweight or obese. We also detected elevated expression of the PVT1 long-non-coding RNA (lncRNA) in most tumors and found gains in copy number for both MYC and PVT1 gene loci in 35% of tumors evaluated. Our transcriptome analyses indicate that EOCRC can be sub-classified into groups based on differential MYC expression and suggest that deregulated MYC contributes to CRCs that develop in younger patients.
Collapse
Affiliation(s)
- Olivia M. Marx
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Marc M. Mankarious
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Melanie A. Eshelman
- Department of Pediatrics, Division of Hematology & Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Wei Ding
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Walter A. Koltun
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Gregory S. Yochum
- Department of Biochemistry & Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Surgery, Division of Colon & Rectal Surgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
4
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
5
|
Feunteun J, Ostyn P, Delaloge S. TUMOR CELL MALIGNANCY: A COMPLEX TRAIT BUILT THROUGH RECIPROCAL INTERACTIONS BETWEEN TUMORS AND TISSUE-BODY SYSTEM. iScience 2022; 25:104217. [PMID: 35494254 PMCID: PMC9044163 DOI: 10.1016/j.isci.2022.104217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.
Collapse
Affiliation(s)
- Jean Feunteun
- INSERM U981, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
- Corresponding author
| | - Pauline Ostyn
- UMR 9019, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Suzette Delaloge
- Breast Cancer Group, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
6
|
Lam Wong KK, Verheyen EM. Metabolic reprogramming in cancer: mechanistic insights from Drosophila. Dis Model Mech 2021; 14:1-17. [PMID: 34240146 PMCID: PMC8277969 DOI: 10.1242/dmm.048934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cancer cells constantly reprogram their metabolism as the disease progresses. However, our understanding of the metabolic complexity of cancer remains incomplete. Extensive research in the fruit fly Drosophila has established numerous tumor models ranging from hyperplasia to neoplasia. These fly tumor models exhibit a broad range of metabolic profiles and varying nutrient sensitivity. Genetic studies show that fly tumors can use various alternative strategies, such as feedback circuits and nutrient-sensing machinery, to acquire and consolidate distinct metabolic profiles. These studies not only provide fresh insights into the causes and functional relevance of metabolic reprogramming but also identify metabolic vulnerabilities as potential targets for cancer therapy. Here, we review the conceptual advances in cancer metabolism derived from comparing and contrasting the metabolic profiles of fly tumor models, with a particular focus on the Warburg effect, mitochondrial metabolism, and the links between diet and cancer. Summary: Recent research in fruit flies has demonstrated that tumors rewire their metabolism by using diverse strategies that involve feedback regulation, nutrient sensing, intercellular or even inter-organ interactions, yielding new molecules as potential cancer markers or drug targets.
Collapse
Affiliation(s)
- Kenneth Kin Lam Wong
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada.,Centre for Cell Biology, Development and Disease, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada
| |
Collapse
|
7
|
Fahey-Lozano N, La Marca JE, Portela M, Richardson HE. Drosophila Models of Cell Polarity and Cell Competition in Tumourigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1167:37-64. [PMID: 31520348 DOI: 10.1007/978-3-030-23629-8_3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cell competition is an important surveillance mechanism that measures relative fitness between cells in a tissue during development, homeostasis, and disease. Specifically, cells that are "less fit" (losers) are actively eliminated by relatively "more fit" (winners) neighbours, despite the less fit cells otherwise being able to survive in a genetically uniform tissue. Originally described in the epithelial tissues of Drosophila larval imaginal discs, cell competition has since been shown to occur in other epithelial and non-epithelial Drosophila tissues, as well as in mammalian model systems. Many genes and signalling pathways have been identified as playing conserved roles in the mechanisms of cell competition. Among them are genes required for the establishment and maintenance of apico-basal cell polarity: the Crumbs/Stardust/Patj (Crb/Sdt/Patj), Bazooka/Par-6/atypical Protein Kinase C (Baz/Par-6/aPKC), and Scribbled/Discs large 1/Lethal (2) giant larvae (Scrib/Dlg1/L(2)gl) modules. In this chapter, we describe the concepts and mechanisms of cell competition, with emphasis on the relationship between cell polarity proteins and cell competition, particularly the Scrib/Dlg1/L(2)gl module, since this is the best described module in this emerging field.
Collapse
Affiliation(s)
- Natasha Fahey-Lozano
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - John E La Marca
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Marta Portela
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Helena E Richardson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|