1
|
Adolfi MC, Depincé A, Wen M, Pan Q, Herpin A. Development of Ovaries and Sex Change in Fish: Bringing Potential into Action. Sex Dev 2023; 17:84-98. [PMID: 36878204 DOI: 10.1159/000526008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/08/2022] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Encompassing about half of the 60,000 species of vertebrates, fish display the greatest diversity of sex determination mechanisms among metazoans. As such that phylum offers a unique playground to study the impressive variety of gonadal morphogenetic strategies, ranging from gonochorism, with either genetic or environmental sex determination, to unisexuality, with either simultaneous or consecutive hermaphroditism. SUMMARY From the two main types of gonads, the ovaries embrace the important role to produce the larger and non-motile gametes, which is the basis for the development of a future organism. The production of the egg cells is complex and involves the formation of follicular cells, which are necessary for the maturation of the oocytes and the production of feminine hormones. In this vein, our review focuses on the development of ovaries in fish with special emphasis on the germ cells, including those that transition from one sex to the other as part of their life cycle and those that are capable of transitioning to the opposite sex depending on environmental cues. KEY MESSAGES Clearly, establishing an individual as either a female or a male is not accomplished by the sole development of two types of gonads. In most cases, that dichotomy, be it final or transient, is accompanied by coordinated transformations across the entire organism, leading to changes in the physiological sex as a whole. These coordinated transformations require both molecular and neuroendocrine networks, but also anatomical and behavioural adjustments. Remarkably, fish managed to tame the ins and outs of sex reversal mechanisms to take the most advantages of changing sex as adaptive strategies in some situations.
Collapse
Affiliation(s)
- Mateus Contar Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Qiaowei Pan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Amaury Herpin
- Fish Physiology and Genomics, INRAE, UR 1037, Rennes, France
| |
Collapse
|
2
|
Chen S, Yang Y, Gao B, Jia C, Zhu F, Meng Q, Zhang Z, Zhang Z, Xu S. Comparative Proteomics of the Acanthopagrus schlegelii Gonad in Different Sex Reversal. Genes (Basel) 2022; 13:genes13020253. [PMID: 35205296 PMCID: PMC8871944 DOI: 10.3390/genes13020253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 01/15/2023] Open
Abstract
A substantial proportion of Acanthopagrus schlegelii individuals change sex from male to female during their lifetime. However, the mechanisms underlying sex change are unknown. In this research, iTRAQ analyses of proteins obtained from A.schlegelii gonads in four different stages of development were compared. In total, 4692 proteins were identified, including common sex-specific proteins, such as sperm-associated antigen 6 and cilia- and flagella-associated proteins in males, and zona pellucida sperm-binding proteins in females. Furthermore, proteins involved in the integrin signaling pathway, inflammation mediated by the chemokine and cytokine signaling pathways, pyruvate metabolism, CCKR signaling map, de novo purine biosynthesis and the ubiquitin proteasome pathway were upregulated in female gonads, whereas proteins implicated in DNA replication, the heterotrimeric G-protein signaling pathway, Gi alpha- and Gs alpha-mediated pathways, wnt signaling pathway, and hedgehog signaling pathway were upregulated in male gonads. Interestingly, cathepsins were only identified in ovaries, indicating their potential involvement in rapid ovarian development. Apoptosis-related proteins expressed in ovaries (such as MAPK and Cdc42) may protect them from cancer. This is the first report on the gonad proteome from A.schlegelii in different stages of sex reversal, and the results provide important fundamental data for studying the molecular mechanisms of sex reversal.
Collapse
Affiliation(s)
- Shuyin Chen
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
| | - Yunxia Yang
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan 316022, China;
| | - Bo Gao
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
| | - Chaofeng Jia
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
| | - Fei Zhu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
| | - Qian Meng
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
| | - Zhiwei Zhang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
| | - Zhiyong Zhang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong 226007, China; (S.C.); (B.G.); (C.J.); (F.Z.); (Q.M.); (Z.Z.)
- Correspondence: (Z.Z.); (S.X.)
| | - Shixia Xu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (Z.Z.); (S.X.)
| |
Collapse
|
3
|
Geffroy B, Besson M, Sánchez-Baizán N, Clota F, Goikoetxea A, Sadoul B, Ruelle F, Blanc MO, Parrinello H, Hermet S, Blondeau-Bidet E, Pratlong M, Piferrer F, Vandeputte M, Allal F. Unraveling the genotype by environment interaction in a thermosensitive fish with a polygenic sex determination system. Proc Natl Acad Sci U S A 2021; 118:e2112660118. [PMID: 34880131 PMCID: PMC8685686 DOI: 10.1073/pnas.2112660118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 01/03/2023] Open
Abstract
In most animals, sex determination occurs at conception, when sex chromosomes are segregated following Mendelian laws. However, in multiple reptiles and fishes, this genetic sex can be overridden by external factors after fertilization or birth. In some species, the genetic sex may also be governed by multiple genes, further limiting our understanding of sex determination in such species. We used the European sea bass (Dicentrarchus labrax) as a model and combined genomic (using a single nucleotide polymorphism chip) and transcriptomic (RNA-Sequencing) approaches to thoroughly depict this polygenic sex determination system and its interaction with temperature. We estimated genetic sex tendency (eGST), defined as the estimated genetic liability to become a given sex under a liability threshold model for sex determination, which accurately predicts the future phenotypic sex. We found evidence that energetic pathways, concerning the regulation of lipids and glucose, are involved in sex determination and could explain why females tend to exhibit higher energy levels and improved growth compared to males. Besides, early exposure to high-temperature up-regulated sox3, followed by sox9a in individuals with intermediate eGST, but not in individuals showing highly female-biased eGST, providing the most parsimonious explanation for temperature-induced masculinization. This gonadal state was maintained likely by DNA methylation and the up-regulation of several genes involved in histone modifications, including jmjd1c Overall, we describe a sex determination system resulting from continuous genetic and environmental influences in an animal. Our results provide significant progress in our understanding of the mechanisms underlying temperature-induced masculinization in fish.
Collapse
Affiliation(s)
- Benjamin Geffroy
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France;
| | - Mathieu Besson
- SYSAAF, Station LPGP/INRAE, 35042 Rennes, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - Núria Sánchez-Baizán
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Frederic Clota
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | | | - Bastien Sadoul
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, France
| | - François Ruelle
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Marie-Odile Blanc
- Laboratoire Service d'Expérimentations Aquacoles, Ifremer, Palavas-les-Flots, France
| | - Hugues Parrinello
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sophie Hermet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Eva Blondeau-Bidet
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Marine Pratlong
- MGX, BCM, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Francesc Piferrer
- Institut de Ciències del Mar, Spanish National Research Council, Barcelona, Spain
| | - Marc Vandeputte
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350 Jouy-en-Josas, France
| | - François Allal
- MARBEC Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France
| |
Collapse
|
4
|
Campos-Sánchez JC, Mayor-Lafuente J, Guardiola FA, Esteban MÁ. In silico and gene expression analysis of the acute inflammatory response of gilthead seabream (Sparus aurata) after subcutaneous administration of carrageenin. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1623-1643. [PMID: 34448108 PMCID: PMC8478728 DOI: 10.1007/s10695-021-00999-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/08/2021] [Indexed: 05/17/2023]
Abstract
Inflammation is one of the main causes of loss of homeostasis at both the systemic and molecular levels. The aim of this study was to investigate in silico the conservation of inflammation-related proteins in the gilthead seabream (Sparus aurata L.). Open reading frames of the selected genes were used as input in the STRING database for protein-protein interaction network analysis, comparing them with other teleost protein sequences. Proteins of the large yellow croaker (Larimichthys crocea L.) presented the highest percentages of identity with the gilthead seabream protein sequence. The gene expression profile of these proteins was then studied in gilthead seabream specimens subcutaneously injected with carrageenin (1%) or phosphate-buffered saline (control) by analyzing skin samples from the injected zone 12 and 24 h after injection. Gene expression analysis indicated that the mechanisms necessary to terminate the inflammatory response to carrageenin and recover skin homeostasis were activated between 12 and 24 h after injection (at the tested dose). The gene analysis performed in this study could contribute to the identification of the main mechanisms of acute inflammatory response and validate the use of carrageenin as an inflammation model to elucidate these mechanisms in fish.
Collapse
Affiliation(s)
- Jose Carlos Campos-Sánchez
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Javier Mayor-Lafuente
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain
| | - María Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", 30100, Murcia, Spain.
| |
Collapse
|
5
|
Transcriptome Profiling of the Pacific Oyster Crassostrea gigas Visceral Ganglia over a Reproduction Cycle Identifies Novel Regulatory Peptides. Mar Drugs 2021; 19:md19080452. [PMID: 34436291 PMCID: PMC8398477 DOI: 10.3390/md19080452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/18/2022] Open
Abstract
The neuropeptides involved in the regulation of reproduction in the Pacific oyster (Crassostrea gigas) are quite diverse. To investigate this diversity, a transcriptomic survey of the visceral ganglia (VG) was carried out over an annual reproductive cycle. RNA-seq data from 26 samples corresponding to VG at different stages of reproduction were de novo assembled to generate a specific reference transcriptome of the oyster nervous system and used to identify differentially expressed transcripts. Transcriptome mining led to the identification of novel neuropeptide precursors (NPPs) related to the bilaterian Eclosion Hormone (EH), crustacean female sex hormone/Interleukin 17, Nesfatin, neuroparsin/IGFBP, prokineticins, and urotensin I; to the protostome GNQQN, pleurin, prohormones 3 and 4, prothoracotropic hormones (PTTH), and QSamide/PXXXamide; to the lophotrochozoan CCWamide, CLCCY, HFAamide, and LXRX; and to the mollusk-specific NPPs CCCGS, clionin, FYFY, GNamide, GRWRN, GSWN, GWE, IWMPxxGYxx, LXRYamide, RTLFamide, SLRFamide, and WGAGamide. Among the complete repertoire of NPPs, no sex-biased expression was observed. However, 25 NPPs displayed reproduction stage-specific expression, supporting their involvement in the control of gametogenesis or associated metabolisms.
Collapse
|
6
|
Edgecombe J, Urban L, Todd EV, Gemmell NJ. Might Gene Duplication and Neofunctionalization Contribute to the Sexual Lability Observed in Fish? Sex Dev 2021; 15:122-133. [PMID: 34167118 DOI: 10.1159/000515425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/24/2021] [Indexed: 11/19/2022] Open
Abstract
Sex determination and differentiation varies widely across vertebrates, but is most dramatically diverse in fishes. Among fishes sex reversal and sex change are observed in 41 teleost families spanning 7 orders. These sex-changing fish perhaps highlight better than any other system that sex determination is not the narrow and fixed construct we once thought, but a plastic trait that is better viewed as a reaction norm. However, while this stunning transformation is increasingly understood, a fundamental question arises, which is why some fish species have retained this inherent plasticity in sexual fate, while others have not? Here, we explore our current understanding of sex change in fish, some of the factors that permit and constrain sex reversal, and posit that gene duplication and neofunctionalization contribute to the sexual lability observed in fish.
Collapse
Affiliation(s)
- Jonika Edgecombe
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Lara Urban
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Erica V Todd
- School of Life and Environmental Sciences, Deakin University, Queenscliff, Victoria, Australia
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Casas L, Saborido-Rey F. Environmental Cues and Mechanisms Underpinning Sex Change in Fish. Sex Dev 2021; 15:108-121. [PMID: 34111868 DOI: 10.1159/000515274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Fishes are the only vertebrates that undergo sex change during their lifetime, but even within this group, a unique reproductive strategy is displayed by only 1.5% of the teleosts. This lability in alternating sexual fate is the result of the simultaneous suppression and activation of opposing male and female networks. Here, we provide a brief review summarizing recent advances in our understanding of the environmental cues that trigger sex change and their perception, integration, and translation into molecular cascades that convert the sex of an individual. We particularly focus on molecular events underpinning the complex behavioral and morphological transformation involved in sex change, dissecting the main molecular players and regulatory networks that shape the transformation of one sex into the opposite. We show that histological changes and molecular pathways governing gonadal reorganization are better described than the neuroendocrine basis of sex change and that, despite important advances, information is lacking for the majority of hermaphrodite species. We highlight significant gaps in our knowledge of how sex change takes place and suggest future research directions.
Collapse
Affiliation(s)
- Laura Casas
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Fran Saborido-Rey
- Ecology and Marine Resources, Institute of Marine Research (IIM-CSIC), Vigo, Spain
| |
Collapse
|
8
|
Zhu KC, Zhang N, Liu BS, Guo L, Guo HY, Jiang SG, Zhang DC. A chromosome-level genome assembly of the yellowfin seabream (Acanthopagrus latus; Hottuyn, 1782) provides insights into its osmoregulation and sex reversal. Genomics 2021; 113:1617-1627. [PMID: 33839268 DOI: 10.1016/j.ygeno.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/14/2020] [Accepted: 04/05/2021] [Indexed: 12/15/2022]
Abstract
The yellowfin seabream Acanthopagrus latus is the economically most important Sparidae fish in the northern South China Sea. As euryhaline fish, they are perfect model for investigating osmoregulatory mechanisms in teleosts. Moreover, the reproductive biology of hermaphrodites has long been intriguing; however, little information is known about the molecular pathways underlying their sex change. Here, we report a chromosome level reference genome of A. latus generated by employing the PacBio single molecule sequencing technique (SMRT) and high-throughput chromosome conformation capture (Hi-C) technologies. The draft genome of yellowfin seabream was 806 Mb, with 732 Mb scaffolds anchored on 24 chromosomes. The contig N50 and scaffold N50 were 2.6 Mb and 30.17 Mb, respectively. The assembly is of high integrity and includes 92.23% universal single-copy orthologues based on benchmarking universal single-copy orthologs (BUSCO) analysis. A total of 19,631 protein-coding genes were functionally annotated in the reference genome. Moreover, ARRDC3 and GSTA gene families which related to osmoregulation underwent an extensive expansion in two euryhaline sparids fish genomes compared to other teleost genomes. Moreover, integrating sex-specific transcriptome analyses, several genes related to the transforming growth factor beta (TGF-β) signalling pathway involved in sex differentiation and development. This genomic resource will not only be valuable for studying the osmoregulatory mechanisms in estuarine fish and sex determination in hermaphrodite vertebrate species, but also provide useful genomic tools for facilitating breeding of the yellowfin seabream.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, Guangdong Province, PR China; Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), 511458, Guangzhou, Guangdong Province, PR China; Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
9
|
Li S, Lin G, Fang W, Huang P, Gao D, Huang J, Xie J, Lu J. Gonadal Transcriptome Analysis of Sex-Related Genes in the Protandrous Yellowfin Seabream ( Acanthopagrus latus). Front Genet 2020; 11:709. [PMID: 32765585 PMCID: PMC7378800 DOI: 10.3389/fgene.2020.00709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
Yellowfin seabream (Acanthopagrus latus), a protandrous hermaphroditic fish, is a good model for studying the mechanism of sex reversal. However, limited knowledge is known about the genetic information related to reproduction and sex differentiation in this species. Here, we performed de novo transcriptome sequencing analysis of the testis, ovotestis, and ovary to identify sex-related genes in yellowfin seabream. The results assembled 71,765 unigenes in which 16,126 and 17,560 unigenes were differentially expressed in the ovotestis and ovary compared to the testis, respectively. The most differentially expressed gene (DEG)-enriched Kyoto Encyclopedia of Genes and Genomes and GO pathways were closely associated with the synthesis of sex steroid hormones. Functional analyses identified 55 important sex-related DEGs, including 32 testis-biased DEGs (dmrt1, amh, and sox9, etc.), 20 ovary-biased DEGs (cyp19a, foxl2, and wnt4, etc.), and 3 ovotestis-biased DEGs (lhb, dmrt2, and foxh1). Furthermore, the testis-specific expression of dmrt1 and the brain-pituitary-ovary axis expression of foxl2 were characterized, suggesting that they might play important roles in sex differentiation in yellowfin seabream. Our present work provided an important molecular basis for elucidating the mechanisms underlying sexual transition and reproductional regulation in yellowfin seabream.
Collapse
Affiliation(s)
- Shizhu Li
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Peilin Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jingui Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| |
Collapse
|
10
|
Ortega-Recalde O, Goikoetxea A, Hore TA, Todd EV, Gemmell NJ. The Genetics and Epigenetics of Sex Change in Fish. Annu Rev Anim Biosci 2019; 8:47-69. [PMID: 31525067 DOI: 10.1146/annurev-animal-021419-083634] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fish show extraordinary sexual plasticity, changing sex naturally as part of their life cycle or reversing sex because of environmental stressors. This plasticity shows that sexual fate is not an irreversible process but the result of an ongoing tug-of-war for supremacy between male and female signaling networks. The behavioral, gonadal, and morphological changes involved in this process are well described, yet the molecular events that underpin those changes remain poorly understood. Epigenetic modifications emerge as a critical link between environmental stimuli, the onset of sex change, and subsequent maintenance of sexual phenotype. Here we synthesize current knowledge of sex change, focusing on the genetic and epigenetic processes that are likely involved in the initiation and regulation of sex change. We anticipate that better understanding of sex change in fish will shed new light on sex determination and development in vertebrates and on how environmental perturbations affect sexual fate.
Collapse
|
11
|
Todd EV, Ortega-Recalde O, Liu H, Lamm MS, Rutherford KM, Cross H, Black MA, Kardailsky O, Marshall Graves JA, Hore TA, Godwin JR, Gemmell NJ. Stress, novel sex genes, and epigenetic reprogramming orchestrate socially controlled sex change. SCIENCE ADVANCES 2019; 5:eaaw7006. [PMID: 31309157 PMCID: PMC6620101 DOI: 10.1126/sciadv.aaw7006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 05/15/2023]
Abstract
Bluehead wrasses undergo dramatic, socially cued female-to-male sex change. We apply transcriptomic and methylome approaches in this wild coral reef fish to identify the primary trigger and subsequent molecular cascade of gonadal metamorphosis. Our data suggest that the environmental stimulus is exerted via the stress axis and that repression of the aromatase gene (encoding the enzyme converting androgens to estrogens) triggers a cascaded collapse of feminizing gene expression and identifies notable sex-specific gene neofunctionalization. Furthermore, sex change involves distinct epigenetic reprogramming and an intermediate state with altered epigenetic machinery expression akin to the early developmental cells of mammals. These findings reveal at a molecular level how a normally committed developmental process remains plastic and is reversed to completely alter organ structures.
Collapse
Affiliation(s)
- Erica V. Todd
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Corresponding author. (E.V.T.); (O.O.-R.); (N.J.G.)
| | - Oscar Ortega-Recalde
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Corresponding author. (E.V.T.); (O.O.-R.); (N.J.G.)
| | - Hui Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Melissa S. Lamm
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | | | - Hugh Cross
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Michael A. Black
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Olga Kardailsky
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - John R. Godwin
- Department of Biological Sciences and WM Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, USA
| | - Neil J. Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Corresponding author. (E.V.T.); (O.O.-R.); (N.J.G.)
| |
Collapse
|