1
|
Nava AA, Arboleda VA. The omics era: a nexus of untapped potential for Mendelian chromatinopathies. Hum Genet 2024; 143:475-495. [PMID: 37115317 PMCID: PMC11078811 DOI: 10.1007/s00439-023-02560-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
The OMICs cascade describes the hierarchical flow of information through biological systems. The epigenome sits at the apex of the cascade, thereby regulating the RNA and protein expression of the human genome and governs cellular identity and function. Genes that regulate the epigenome, termed epigenes, orchestrate complex biological signaling programs that drive human development. The broad expression patterns of epigenes during human development mean that pathogenic germline mutations in epigenes can lead to clinically significant multi-system malformations, developmental delay, intellectual disabilities, and stem cell dysfunction. In this review, we refer to germline developmental disorders caused by epigene mutation as "chromatinopathies". We curated the largest number of human chromatinopathies to date and our expanded approach more than doubled the number of established chromatinopathies to 179 disorders caused by 148 epigenes. Our study revealed that 20.6% (148/720) of epigenes cause at least one chromatinopathy. In this review, we highlight key examples in which OMICs approaches have been applied to chromatinopathy patient biospecimens to identify underlying disease pathogenesis. The rapidly evolving OMICs technologies that couple molecular biology with high-throughput sequencing or proteomics allow us to dissect out the causal mechanisms driving temporal-, cellular-, and tissue-specific expression. Using the full repertoire of data generated by the OMICs cascade to study chromatinopathies will provide invaluable insight into the developmental impact of these epigenes and point toward future precision targets for these rare disorders.
Collapse
Affiliation(s)
- Aileen A Nava
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA
| | - Valerie A Arboleda
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Department of Computational Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA.
- Broad Stem Cell Research Center, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Otsuka T, Matsui H. Fish Models for Exploring Mitochondrial Dysfunction Affecting Neurodegenerative Disorders. Int J Mol Sci 2023; 24:ijms24087079. [PMID: 37108237 PMCID: PMC10138900 DOI: 10.3390/ijms24087079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Neurodegenerative disorders are characterized by the progressive loss of neuronal structure or function, resulting in memory loss and movement disorders. Although the detailed pathogenic mechanism has not been elucidated, it is thought to be related to the loss of mitochondrial function in the process of aging. Animal models that mimic the pathology of a disease are essential for understanding human diseases. In recent years, small fish have become ideal vertebrate models for human disease due to their high genetic and histological homology to humans, ease of in vivo imaging, and ease of genetic manipulation. In this review, we first outline the impact of mitochondrial dysfunction on the progression of neurodegenerative diseases. Then, we highlight the advantages of small fish as model organisms, and present examples of previous studies regarding mitochondria-related neuronal disorders. Lastly, we discuss the applicability of the turquoise killifish, a unique model for aging research, as a model for neurodegenerative diseases. Small fish models are expected to advance our understanding of the mitochondrial function in vivo, the pathogenesis of neurodegenerative diseases, and be important tools for developing therapies to treat diseases.
Collapse
Affiliation(s)
- Takayoshi Otsuka
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
3
|
Tan LX, Li J, Germer CJ, Lakkaraju A. Analysis of mitochondrial dynamics and function in the retinal pigment epithelium by high-speed high-resolution live imaging. Front Cell Dev Biol 2022; 10:1044672. [PMID: 36393836 PMCID: PMC9651161 DOI: 10.3389/fcell.2022.1044672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial dysfunction is strongly implicated in neurodegenerative diseases including age-related macular degeneration (AMD), which causes irreversible blindness in over 50 million older adults worldwide. A key site of insult in AMD is the retinal pigment epithelium (RPE), a monolayer of postmitotic polarized cells that performs essential functions for photoreceptor health and vision. Recent studies from our group and others have identified several features of mitochondrial dysfunction in AMD including mitochondrial fragmentation and bioenergetic defects. While these studies provide valuable insight at fixed points in time, high-resolution, high-speed live imaging is essential for following mitochondrial injury in real time and identifying disease mechanisms. Here, we demonstrate the advantages of live imaging to investigate RPE mitochondrial dynamics in cell-based and mouse models. We show that mitochondria in the RPE form extensive networks that are destroyed by fixation and discuss important live imaging considerations that can interfere with accurate evaluation of mitochondrial integrity such as RPE differentiation status and acquisition parameters. Our data demonstrate that RPE mitochondria show localized heterogeneities in membrane potential and ATP production that could reflect focal changes in metabolism and oxidative stress. Contacts between the mitochondria and organelles such as the ER and lysosomes mediate calcium flux and mitochondrial fission. Live imaging of mouse RPE flatmounts revealed a striking loss of mitochondrial integrity in albino mouse RPE compared to pigmented mice that could have significant functional consequences for cellular metabolism. Our studies lay a framework to guide experimental design and selection of model systems for evaluating mitochondrial health and function in the RPE.
Collapse
Affiliation(s)
- Li Xuan Tan
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
| | - Jianlong Li
- Department of Cell and Tissue Biology, School of Dentistry, University of California, San Francisco, CA, United States
| | - Colin J. Germer
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
| | - Aparna Lakkaraju
- Department of Ophthalmology, School of Medicine, University of California, San Francisco, CA, United States
- Pharmaceutical Sciences and Pharmacogenomics Graduate Program, University of California, San Francisco, CA, United States
- Department of Anatomy, School of Medicine, University of California, San Francisco, CA, United States
| |
Collapse
|
4
|
Acharya A, Nemade H, Rajendra Prasad K, Khan K, Hescheler J, Blackburn N, Hemmersbach R, Papadopoulos S, Sachinidis A. Live-Cell Imaging of the Contractile Velocity and Transient Intracellular Ca 2+ Fluctuations in Human Stem Cell-Derived Cardiomyocytes. Cells 2022; 11:1280. [PMID: 35455960 PMCID: PMC9031802 DOI: 10.3390/cells11081280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 02/01/2023] Open
Abstract
Live-cell imaging techniques are essential for acquiring vital physiological and pathophysiological knowledge to understand and treat heart disease. For live-cell imaging of transient alterations of [Ca2+]i in human cardiomyocytes, we engineered human-induced pluripotent stem cells carrying a genetically-encoded Ca2+-indicator (GECI). To monitor sarcomere shortening and relaxation in cardiomyocytes in real-time, we generated a α-cardiac actinin (ACTN2)-copepod (cop) green fluorescent protein (GFP+)-human-induced pluripotent stem cell line by using the CRISPR-Cas9 and a homology directed recombination approach. The engineered human-induced pluripotent stem cells were differentiated in transgenic GECI-enhanced GFP+-cardiomyocytes and ACTN2-copGFP+-cardiomyocytes, allowing real-time imaging of [Ca2+]i transients and live recordings of the sarcomere shortening velocity of ACTN2-copGFP+-cardiomyocytes. We developed a video analysis software tool to quantify various parameters of sarcoplasmic Ca2+ fluctuations recorded during contraction of cardiomyocytes and to calculate the contraction velocity of cardiomyocytes in the presence and absence of different drugs affecting cardiac function. Our cellular and software tool not only proved the positive and negative inotropic and lusitropic effects of the tested cardioactive drugs but also quantified the expected effects precisely. Our platform will offer a human-relevant in vitro alternative for high-throughput drug screenings, as well as a model to explore the underlying mechanisms of cardiac diseases.
Collapse
Affiliation(s)
- Aviseka Acharya
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Harshal Nemade
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Krishna Rajendra Prasad
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Khadija Khan
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Jürgen Hescheler
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Nick Blackburn
- Bioras Company, Kaarsbergsvej 2, 8400 Ebeltoft, Denmark;
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany;
| | - Symeon Papadopoulos
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
| | - Agapios Sachinidis
- Working Group Sachinidis, Center for Physiology, Faculty of Medicine and University Hospital Cologne, The University of Cologne, 50931 Cologne, Germany; (A.A.); (H.N.); (K.R.P.); (K.K.); (J.H.); (S.P.)
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Fiorillo M, Ózsvári B, Sotgia F, Lisanti MP. High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Front Oncol 2021; 11:740720. [PMID: 34722292 PMCID: PMC8554334 DOI: 10.3389/fonc.2021.740720] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the “metabolically fittest” cancer cells from the total cell population. Importantly, ATP-high cancer cells were phenotypically the most aggressive, with enhanced stem-like properties, showing multi-drug resistance and an increased capacity for cell migration, invasion and spontaneous metastasis. In support of these observations, ATP-high cells demonstrated the up-regulation of both mitochondrial proteins and other protein biomarkers, specifically associated with stemness and metastasis. Therefore, we propose that the “energetically fittest” cancer cells would be better able to resist the selection pressure provided by i) a hostile micro-environment and/or ii) conventional chemotherapy, allowing them to be naturally-selected for survival, based on their high ATP content, ultimately driving tumor recurrence and distant metastasis. In accordance with this energetic hypothesis, ATP-high MDA-MB-231 breast cancer cells showed a dramatic increase in their ability to metastasize in a pre-clinical model in vivo. Conversely, metastasis was largely prevented by treatment with an FDA-approved drug (Bedaquiline), which binds to and inhibits the mitochondrial ATP-synthase, leading to ATP depletion. Clinically, these new therapeutic approaches could have important implications for preventing treatment failure and avoiding cancer cell dormancy, by employing ATP-depletion therapy, to target even the fittest cancer cells.
Collapse
Affiliation(s)
- Marco Fiorillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Béla Ózsvári
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| | - Michael P Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, United Kingdom
| |
Collapse
|
6
|
Liput M, Magliaro C, Kuczynska Z, Zayat V, Ahluwalia A, Buzanska L. Tools and approaches for analyzing the role of mitochondria in health, development and disease using human cerebral organoids. Dev Neurobiol 2021; 81:591-607. [PMID: 33725382 DOI: 10.1002/dneu.22818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/16/2022]
Abstract
Mitochondria are cellular organelles involved in generating energy to power various processes in the cell. Although the pivotal role of mitochondria in neurogenesis was demonstrated (first in animal models), very little is known about their role in human embryonic neurodevelopment and its pathology. In this respect human-induced pluripotent stem cells (hiPSC)-derived cerebral organoids provide a tractable, alternative model system of the early neural development and disease that is responsive to pharmacological and genetic manipulations, not possible to apply in humans. Although the involvement of mitochondria in the pathogenesis and progression of neurodegenerative diseases and brain dysfunction has been demonstrated, the precise role they play in cell life and death remains unknown, compromising the development of new mitochondria-targeted approaches to treat human diseases. The cerebral organoid model of neurogenesis and disease in vitro provides an unprecedented opportunity to answer some of the most fundamental questions about mitochondrial function in early human neurodevelopment and neural pathology. Largely an unexplored territory due to the lack of tools and approaches, this review focuses on recent technological advancements in fluorescent and molecular tools, imaging systems, and computational approaches for quantitative and qualitative analyses of mitochondrial structure and function in three-dimensional cellular assemblies-cerebral organoids. Future developments in this direction will further facilitate our understanding of the important role or mitochondrial dynamics and energy requirements during early embryonic development. This in turn will provide a further understanding of how dysfunctional mitochondria contribute to disease processes.
Collapse
Affiliation(s)
- Michał Liput
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Chiara Magliaro
- Research Centre "E. Piaggio", and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Zuzanna Kuczynska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Valery Zayat
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Arti Ahluwalia
- Research Centre "E. Piaggio", and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Leonora Buzanska
- Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Li H, Uittenbogaard M, Hao L, Chiaramello A. Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics. Metabolites 2021; 11:233. [PMID: 33920115 PMCID: PMC8070181 DOI: 10.3390/metabo11040233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Haorong Li
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Martine Uittenbogaard
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| | - Ling Hao
- Department of Chemistry, George Washington University, Science and Engineering Hall 4000, 800 22nd St., NW, Washington, DC 20052, USA;
| | - Anne Chiaramello
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 I Street N.W. Ross Hall 111, Washington, DC 20037, USA;
| |
Collapse
|
8
|
Espinosa JA, Pohan G, Arkin MR, Markossian S. Real-Time Assessment of Mitochondrial Toxicity in HepG2 Cells Using the Seahorse Extracellular Flux Analyzer. Curr Protoc 2021; 1:e75. [PMID: 33735523 DOI: 10.1002/cpz1.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The liver is the primary organ responsible for drug detoxification. Drug-induced liver injury (DILI) is a leading cause of attrition during drug development and is one of the main reasons that drugs are withdrawn from the market. Hence, the prevention of DILI plays a central role in the overall drug-discovery process. Most of the liver's energy supply comes in the form of adenosine triphosphate (ATP), which is largely generated by mitochondria. This article describes the evaluation of drug-induced mitochondrial dysfunction using the Seahorse Extracellular Flux Analyzer (Agilent). The described protocols detail the accurate measurement of ATP production rate in HepG2 cells after exposure to a panel of potentially toxic compounds. This assay measures changes in extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) as indicators of glycolysis and mitochondrial respiration-the two major energy-generating pathways in a cell. This assay provides a useful model to predict mitochondrial dysfunction-mediated DILI. © 2021 Wiley Periodicals LLC. Basic Protocol: Measurement of cellular ECAR, OCR, and ATP production in live HepG2 cells Support Protocol 1: Culturing and maintaining of HepG2 cells Support Protocol 2: Determining optimal cell density per well.
Collapse
Affiliation(s)
- Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California.,Current Address: National Center for Advancing Translational Sciences, Rockville, Maryland
| |
Collapse
|
9
|
Chin MY, Espinosa JA, Pohan G, Markossian S, Arkin MR. Reimagining dots and dashes: Visualizing structure and function of organelles for high-content imaging analysis. Cell Chem Biol 2021; 28:320-337. [PMID: 33600764 PMCID: PMC7995685 DOI: 10.1016/j.chembiol.2021.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
Organelles are responsible for biochemical and cellular processes that sustain life and their dysfunction causes diseases from cancer to neurodegeneration. While researchers are continuing to appreciate new roles of organelles in disease, the rapid development of specifically targeted fluorescent probes that report on the structure and function of organelles will be critical to accelerate drug discovery. Here, we highlight four organelles that collectively exemplify the progression of phenotypic discovery, starting with mitochondria, where many functional probes have been described, then continuing with lysosomes and Golgi and concluding with nascently described membraneless organelles. We introduce emerging probe designs to explore organelle-specific morphology and dynamics and highlight recent case studies using high-content analysis to stimulate further development of probes and approaches for organellar high-throughput screening.
Collapse
Affiliation(s)
- Marcus Y Chin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Jether Amos Espinosa
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Grace Pohan
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
10
|
Garcez M, Branco-Santos J, Gracio PC, Homem CCF. Mitochondrial Dynamics in the Drosophila Ovary Regulates Germ Stem Cell Number, Cell Fate, and Female Fertility. Front Cell Dev Biol 2021; 8:596819. [PMID: 33585443 PMCID: PMC7876242 DOI: 10.3389/fcell.2020.596819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/30/2020] [Indexed: 01/07/2023] Open
Abstract
The fate and proliferative capacity of stem cells have been shown to strongly depend on their metabolic state. Mitochondria are the powerhouses of the cell being responsible for energy production via oxidative phosphorylation (OxPhos) as well as for several other metabolic pathways. Mitochondrial activity strongly depends on their structural organization, with their size and shape being regulated by mitochondrial fusion and fission, a process known as mitochondrial dynamics. However, the significance of mitochondrial dynamics in the regulation of stem cell metabolism and fate remains elusive. Here, we characterize the role of mitochondria morphology in female germ stem cells (GSCs) and in their more differentiated lineage. Mitochondria are particularly important in the female GSC lineage. Not only do they provide these cells with their energy requirements to generate the oocyte but they are also the only mitochondria pool to be inherited by the offspring. We show that the undifferentiated GSCs predominantly have fissed mitochondria, whereas more differentiated germ cells have more fused mitochondria. By reducing the levels of mitochondrial dynamics regulators, we show that both fused and fissed mitochondria are required for the maintenance of a stable GSC pool. Surprisingly, we found that disrupting mitochondrial dynamics in the germline also strongly affects nurse cells morphology, impairing egg chamber development and female fertility. Interestingly, reducing the levels of key enzymes in the Tricarboxylic Acid Cycle (TCA), known to cause OxPhos reduction, also affects GSC number. This defect in GSC self-renewal capacity indicates that at least basal levels of TCA/OxPhos are required in GSCs. Our findings show that mitochondrial dynamics is essential for female GSC maintenance and female fertility, and that mitochondria fusion and fission events are dynamically regulated during GSC differentiation, possibly to modulate their metabolic profile.
Collapse
Affiliation(s)
- Marcia Garcez
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.,Graduate Program in Areas of Basic and Applied Biology (GABBA), Universidade do Porto, Porto, Portugal
| | - Joana Branco-Santos
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Pasquale V, Ducci G, Campioni G, Ventrici A, Assalini C, Busti S, Vanoni M, Vago R, Sacco E. Profiling and Targeting of Energy and Redox Metabolism in Grade 2 Bladder Cancer Cells with Different Invasiveness Properties. Cells 2020; 9:cells9122669. [PMID: 33322565 PMCID: PMC7764708 DOI: 10.3390/cells9122669] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Bladder cancer is one of the most prevalent deadly diseases worldwide. Grade 2 tumors represent a good window of therapeutic intervention, whose optimization requires high resolution biomarker identification. Here we characterize energy metabolism and cellular properties associated with spreading and tumor progression of RT112 and 5637, two Grade 2 cancer cell lines derived from human bladder, representative of luminal-like and basal-like tumors, respectively. The two cell lines have similar proliferation rates, but only 5637 cells show efficient lateral migration. In contrast, RT112 cells are more prone to form spheroids. RT112 cells produce more ATP by glycolysis and OXPHOS, present overall higher metabolic plasticity and are less sensitive than 5637 to nutritional perturbation of cell proliferation and migration induced by treatment with 2-deoxyglucose and metformin. On the contrary, spheroid formation is less sensitive to metabolic perturbations in 5637 than RT112 cells. The ability of metformin to reduce, although with different efficiency, cell proliferation, sphere formation and migration in both cell lines, suggests that OXPHOS targeting could be an effective strategy to reduce the invasiveness of Grade 2 bladder cancer cells.
Collapse
Affiliation(s)
- Valentina Pasquale
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Giacomo Ducci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Gloria Campioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Adria Ventrici
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
| | - Chiara Assalini
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
| | - Stefano Busti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
| | - Marco Vanoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
- Correspondence: (M.V.); (R.V.); (E.S.); Tel.: +39-02-6448-3525 (M.V.); +39-02-2643-5664 (R.V.); +39-02-6448-3379 (E.S.)
| | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, 20132 Milan, Italy;
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Correspondence: (M.V.); (R.V.); (E.S.); Tel.: +39-02-6448-3525 (M.V.); +39-02-2643-5664 (R.V.); +39-02-6448-3379 (E.S.)
| | - Elena Sacco
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy; (V.P.); (G.D.); (G.C.); (A.V.); (S.B.)
- SYSBIO-ISBE-IT-Candidate National Node of Italy for ISBE, Research Infrastructure for Systems Biology Europe, 20126 Milan, Italy
- Correspondence: (M.V.); (R.V.); (E.S.); Tel.: +39-02-6448-3525 (M.V.); +39-02-2643-5664 (R.V.); +39-02-6448-3379 (E.S.)
| |
Collapse
|
12
|
Cong G, Cui X, Ferrari R, Pipinos II, Casale GP, Chattopadhyay A, Sachdev U. Fibrosis Distinguishes Critical Limb Ischemia Patients from Claudicants in a Transcriptomic and Histologic Analysis. J Clin Med 2020; 9:jcm9123974. [PMID: 33302519 PMCID: PMC7763090 DOI: 10.3390/jcm9123974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 01/01/2023] Open
Abstract
Most patients with critical limb ischemia (CLI) from peripheral arterial disease (PAD) do not have antecedent intermittent claudication (IC). We hypothesized that transcriptomic analysis would identify CLI-specific pathways, particularly in regards to fibrosis. Derivation cohort data from muscle biopsies in PAD and non-PAD (controls) was obtained from the Gene Expression Omnibus (GSE120642). Transcriptomic analysis indicated CLI patients (N = 16) had a unique gene expression profile, when compared with non-PAD controls (N = 15) and IC (N = 20). Ninety-eight genes differed between controls and IC, 2489 genes differed between CLI and controls, and 2783 genes differed between CLI and IC patients. Pathway enrichment analysis showed that pathways associated with TGFβ, collagen deposition, and VEGF signaling were enriched in CLI but not IC. Receiver operating curve (ROC) analysis of nine fibrosis core gene expression revealed the areas under the ROC (AUC) were all >0.75 for CLI. Furthermore, the fibrosis area (AUC = 0.81) and % fibrosis (AUC = 0.87) in validation cohort validated the fibrosis discrimination CLI from IC and control (all n = 12). In conclusion, transcriptomic analysis identified fibrosis pathways, including those involving TGFβ, as a novel gene expression feature for CLI but not IC. Fibrosis is an important characteristic of CLI, which we confirmed histologically, and may be a target for novel therapies in PAD.
Collapse
Affiliation(s)
- Guangzhi Cong
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
- Department of Surgery, University of Nebraska at Medical Center, Omaha, NE 68198, USA
| | - Xiangdong Cui
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
| | - Ricardo Ferrari
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
| | - Iraklis I. Pipinos
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA; (I.I.P.); (G.P.C.)
- Molecular Biology Information Service, Health Sciences Library System University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - George P. Casale
- Department of Surgery and VA Research Service, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA; (I.I.P.); (G.P.C.)
| | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Centre, Pittsburgh, PA 15217, USA; (G.C.); (X.C.); (R.F.)
- Correspondence:
| |
Collapse
|
13
|
Akinci E, Cha M, Lin L, Yeo G, Hamilton MC, Donahue CJ, Bermudez-Cabrera HC, Zanetti LC, Chen M, Barkal SA, Khowpinitchai B, Chu N, Velimirovic M, Jodhani R, Fife JD, Sovrovic M, Cole PA, Davey RA, Cassa CA, Sherwood RI. Elucidation of remdesivir cytotoxicity pathways through genome-wide CRISPR-Cas9 screening and transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.08.27.270819. [PMID: 32869031 PMCID: PMC7457617 DOI: 10.1101/2020.08.27.270819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The adenosine analogue remdesivir has emerged as a front-line antiviral treatment for SARS-CoV-2, with preliminary evidence that it reduces the duration and severity of illness1.Prior clinical studies have identified adverse events1,2, and remdesivir has been shown to inhibit mitochondrial RNA polymerase in biochemical experiments7, yet little is known about the specific genetic pathways involved in cellular remdesivir metabolism and cytotoxicity. Through genome-wide CRISPR-Cas9 screening and RNA sequencing, we show that remdesivir treatment leads to a repression of mitochondrial respiratory activity, and we identify five genes whose loss significantly reduces remdesivir cytotoxicity. In particular, we show that loss of the mitochondrial nucleoside transporter SLC29A3 mitigates remdesivir toxicity without a commensurate decrease in SARS-CoV-2 antiviral potency and that the mitochondrial adenylate kinase AK2 is a remdesivir kinase required for remdesivir efficacy and toxicity. This work elucidates the cellular mechanisms of remdesivir metabolism and provides a candidate gene target to reduce remdesivir cytotoxicity.
Collapse
Affiliation(s)
- Ersin Akinci
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Agricultural Biotechnology, Faculty of Agriculture, Akdeniz University, Antalya, 07070, Turkey
| | - Minsun Cha
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Lin Lin
- Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| | - Grace Yeo
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marisa C Hamilton
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Callie J Donahue
- Department of Microbiology, National Emerging Infectious Disease Laboratories, Boston University Medical Campus, Boston, MA 02118, USA
| | - Heysol C Bermudez-Cabrera
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Larissa C Zanetti
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Hospital Israelita Albert Einstein, São Paulo, SP 05652-900, Brazil
| | - Maggie Chen
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Sammy A Barkal
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Benyapa Khowpinitchai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Nam Chu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Minja Velimirovic
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Centre Hospitalier Universitaire de Québec Research Center-Université Laval, Québec, Québec G1V 4G2, Canada
| | - Rikita Jodhani
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - James D Fife
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Miha Sovrovic
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115
| | - Robert A Davey
- Department of Microbiology, National Emerging Infectious Disease Laboratories, Boston University Medical Campus, Boston, MA 02118, USA
| | - Christopher A Cassa
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Richard I Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
- Hubrecht Institute, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
14
|
Surana S, Villarroel‐Campos D, Lazo OM, Moretto E, Tosolini AP, Rhymes ER, Richter S, Sleigh JN, Schiavo G. The evolution of the axonal transport toolkit. Traffic 2019; 21:13-33. [DOI: 10.1111/tra.12710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Sunaina Surana
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - David Villarroel‐Campos
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Oscar M. Lazo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Edoardo Moretto
- UK Dementia Research InstituteUniversity College London London UK
| | - Andrew P. Tosolini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Elena R. Rhymes
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - Sandy Richter
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
| | - James N. Sleigh
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases, UCL Queen Square Institute of NeurologyUniversity College London London UK
- UK Dementia Research InstituteUniversity College London London UK
- Discoveries Centre for Regenerative and Precision MedicineUniversity College London London UK
| |
Collapse
|