1
|
Zafar UB, Shahzaib M, Atif RM, Khan SH, Niaz MZ, Shahzad K, Chughtai N, Awan FS, Azhar MT, Rana IA. De novo transcriptome assembly of Dalbergia sissoo Roxb. (Fabaceae) under Botryodiplodia theobromae-induced dieback disease. Sci Rep 2023; 13:20503. [PMID: 37993468 PMCID: PMC10665356 DOI: 10.1038/s41598-023-45982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023] Open
Abstract
Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs.
Collapse
Affiliation(s)
- Ummul Buneen Zafar
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Shahzaib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Rana Muhammad Atif
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Muhammad Zeeshan Niaz
- Plant Pathology Research Institute, Ayub Agriculture Research Institute, Faisalabad, 38850, Punjab, Pakistan
| | - Khalid Shahzad
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Nighat Chughtai
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
2
|
de Carvalho JP, Carrilho MC, dos Anjos DS, Hernandez CD, Sichero L, Dagli MLZ. Unraveling the Risk Factors and Etiology of the Canine Oral Mucosal Melanoma: Results of an Epidemiological Questionnaire, Oral Microbiome Analysis and Investigation of Papillomavirus Infection. Cancers (Basel) 2022; 14:cancers14143397. [PMID: 35884456 PMCID: PMC9316277 DOI: 10.3390/cancers14143397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Oral mucosal melanoma (OMM) is one of the most common oral cancers in dogs; however, the risk factors for its development remain obscure and the etiology is unknown. This study aimed to investigate the risk factors and etiology of OMM in dogs. An epidemiological questionnaire was applied to the owners of 15 dogs with OMM and their paired controls, and the oral microbiome was comparatively determined in the two groups. Additionally, the presence of papillomavirus was investigated in the same OMM samples. Most OMM and control dogs had grade 3 periodontal disease. No risk factors were identified through the epidemiological questionnaire, and papillomaviruses were not identified in the samples. The bacteria Tannerella forsythia and Porphyromonas gingivalis were significantly overrepresented in dogs with OMM, and their presence could be considered a risk factor for the development of canine OMM. Abstract Oral mucosal melanoma (OMM) is the most common oral cancer in dogs and is very aggressive in this species; its risk factors and etiology are yet to be determined. This study aimed to unravel the risk factors for the development of OMM in dogs and to investigate the possible presence of papillomaviruses as an etiological factor. A case-control study was conducted in 15 dogs with OMM and 15 paired controls whose owners answered an epidemiological questionnaire. Oral swabs from the same dogs were subjected to 16S rRNA sequencing for microbiome analyses. In addition, DNA fragments of OMM had their DNA extracted and amplified by polymerase chain reaction in an attempt to detect canine papillomaviruses. The gingiva was the most frequent anatomical site (47%) of OMM, and most tumors were stage III when diagnosed. Most dogs bearing OMM and the controls had grade 3 periodontal disease, and this factor, along with tartar treatment and tooth brushing, did not differ between cases and controls. Most dogs with OMM and most controls had contact with smokers; there was no statistically significant difference. Canine papillomaviruses were not detected among OMM cases. Tannerella forsythia and Porphyromonas gingivalis were significantly increased in case dogs compared to the controls. As these bacteria are reportedly involved in the pathogenesis of periodontal disease and esophageal cancer in humans, we suggest that they might be risk factors for the development of canine OMM. The limitations of this study include the low number of dogs, and therefore, further studies on canine OMM with larger numbers of animals are encouraged.
Collapse
Affiliation(s)
- Joyce Pires de Carvalho
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.P.d.C.); (M.C.C.)
| | - Marcella Collaneri Carrilho
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.P.d.C.); (M.C.C.)
| | | | | | - Laura Sichero
- Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo-ICESP, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo FMUSP HC, Sao Paulo 05403-000, SP, Brazil;
| | - Maria Lúcia Zaidan Dagli
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, SP, Brazil; (J.P.d.C.); (M.C.C.)
- Correspondence:
| |
Collapse
|
3
|
Sequencing and de novo transcriptome assembly for discovering regulators of gene expression in Jack (Artocarpus heterophyllus). Genomics 2022; 114:110356. [PMID: 35364267 DOI: 10.1016/j.ygeno.2022.110356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 03/27/2022] [Indexed: 01/14/2023]
Abstract
Jack (Artocarpus heterophyllus) is a multipurpose fruit-tree species with minimal genomic resources. The study reports developing comprehensive transcriptome data containing 80,411 unigenes with an N50 value of 1265 bp. We predicted 64,215 CDSs from the unigenes and annotated and functionally categorized them into the biological process (23,230), molecular function (27,149), and cellular components (17,284). From 80,411 unigenes, we discovered 16,853 perfect SSRs with 192 distinct repeat motif types reiterating 4 to 22 times. Besides, we identified 2741 TFs from 69 TF families, 53 miRNAs from 19 conserved miRNA families, 25,953 potential lncRNAs, and placed three functional eTMs in different lncRNA-miRNA pairs. The regulatory networks involving genes, TFs, and miRNAs identified several regulatory and regulated nodes providing insight into miRNAs' gene associations and transcription factor-mediated regulation. The comparison of expression patterns of some selected miRNAs vis-à-vis their corresponding target genes showed an inverse relationship indicating the possible miRNA-mediated regulation of the genes.
Collapse
|
4
|
Huang CK, Lin WD, Wu SH. An improved repertoire of splicing variants and their potential roles in Arabidopsis photomorphogenic development. Genome Biol 2022; 23:50. [PMID: 35139889 PMCID: PMC8827149 DOI: 10.1186/s13059-022-02620-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2022] [Indexed: 01/03/2023] Open
Abstract
Background Light switches on the photomorphogenic development of young plant seedlings, allowing young seedlings to acquire photosynthetic capacities and gain survival fitness. Light regulates gene expression at all levels of the central dogma, including alternative splicing (AS) during the photomorphogenic development. However, accurate determination of full-length (FL) splicing variants has been greatly hampered by short-read RNA sequencing technologies. Result In this study, we adopt PacBio isoform sequencing (Iso-seq) to overcome the limitation of the short-read RNA-seq technologies. Normalized cDNA libraries used for Iso-seq allows for comprehensive and effective identification of FL AS variants. Our analyses reveal more than 30,000 splicing variant models from approximately 16,500 gene loci and additionally identify approximately 700 previously unannotated genes. Among the variants, approximately 12,000 represent new gene models. Intron retention (IR) is the most frequently observed form of variants, and many IR-containing AS variants show evidence of engagement in translation. Our study reveals the formation of heterodimers of transcription factors composed of annotated and IR-containing AS variants. Moreover, transgenic plants overexpressing the IR forms of two B-BOX DOMAIN PROTEINs exhibits light-hypersensitive phenotypes, suggesting their regulatory roles in modulating optimal light responses. Conclusions This study provides an accurate and comprehensive portrait of full-length transcript isoforms and experimentally confirms the presence of de novo synthesized AS variants that impose regulatory functions in photomorphogenic development in Arabidopsis. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02620-2.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan
| | - Wen-Dar Lin
- The Bioinformatics Core Lab, Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Hsing Wu
- Institute of Plant and Microbial Biology, Academia Sinica, 128, Sec. 2, Academia Rd., Taipei, 11529, Taiwan.
| |
Collapse
|