1
|
Jia X, Bene J, Balázs N, Szabó K, Berta G, Herczeg R, Gyenesei A, Balogh P. Age-Associated B Cell Features of the Murine High-Grade B Cell Lymphoma Bc.DLFL1 and Its Extranodal Expansion in Abdominal Adipose Tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2866-2876. [PMID: 35867673 DOI: 10.4049/jimmunol.2100956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
Diffuse large B cell lymphoma comprises a heterogeneous group of B cell-derived tumors, with different degrees of aggressiveness, as defined by their cellular origin and tissue microenvironment. Using the spontaneous Bc.DLFL1 lymphoma originating from a BALB/c mouse as a diffuse large B cell lymphoma model, in this study we demonstrate that the lymphoma cells display surface phenotype, IgH V-region somatic mutations, transcription factor characteristics and in vivo location to splenic extrafollicular regions of age-associated B cells (ABCs), corresponding to T-bet+ and Blimp-1+/CD138- plasmablasts derivation. The expansion of lymphoma cells within lymphoid tissues took place in a close arrangement with CD11c+ dendritic cells, whereas the extranodal infiltration occurred selectively in the mesentery and omentum containing resident gp38/podoplanin+ fibroblastic reticular cells. Antagonizing BAFF-R activity by mBR3-Fc soluble receptor fusion protein led to a significant delay of disease progression. The extranodal expansion of Bc.DLFL1 lymphoma within the omental and mesenteric adipose tissues was coupled with a significant change of the tissue cytokine landscape, including both shared alterations and tissue-specific variations. Our findings indicate that while Bc.DLFL1 cells of ABC origin retain the positioning pattern within lymphoid tissues of their physiological counterpart, they also expand in non-lymphoid tissues in a BAFF-dependent manner, where they may alter the adipose tissue microenvironment to support their extranodal growth.
Collapse
Affiliation(s)
- Xinkai Jia
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Judit Bene
- Department of Medical Genetics, Clinical Center, University of Pécs, Pécs, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Katalin Szabó
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscope Laboratory, Medical School, University of Pécs, Pécs, Hungary; and
| | - Róbert Herczeg
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatics Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary;
- Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| |
Collapse
|
2
|
De Veirman K, Puttemans J, Krasniqi A, Ertveldt T, Hanssens H, Romao E, Hose D, Goyvaert C, Vlummens P, Muyldermans S, Breckpot K, Bruchertseifer F, Morgenstern A, D'Huyvetter M, Devoogdt N. CS1-specific single-domain antibodies labeled with Actinium-225 prolong survival and increase CD8+ T cells and PD-L1 expression in Multiple Myeloma. Oncoimmunology 2021; 10:2000699. [PMID: 34777918 PMCID: PMC8583167 DOI: 10.1080/2162402x.2021.2000699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the presence of clonal plasma cells in the bone marrow niche. Despite significant therapeutic advances, MM remains incurable for the majority of patients. Targeted radionuclide therapy (TRNT) has emerged as a promising treatment option to eradicate residual cancer cells. In this study, we developed and characterized single-domain antibodies (sdAbs) against the MM-antigen CS1 and evaluated its therapeutic potential in MM using TRNT. We first validated CS1 as potential target for TRNT. CS1 is expressed in normal and malignant plasma cells in different disease stages including progression and relapse. It is expressed in dormant as well as proliferating MM cells, while low expression could be observed in environmental cells. Biodistribution studies demonstrated the specific uptake of anti-CS1 sdAbs in tissues of 5TMM cell infiltration including bone, spleen and liver. TRNT using anti-CS1 sdAbs labeled with actinium-225 significantly prolonged survival of syngeneic, immunocompetent 5T33MM mice. In addition, we observed an increase in CD8+ T-cells and more overall PD-L1 expression on immune and non-immune cells, implying an interferon gamma signature using actinium-225 labeled CS1-directed sdAbs. In this proof-of-principle study, we highlight, for the first time, the therapeutic potential and immunomodulating effects of anti-CS1 radionuclide therapy to target residual MM cells.
Collapse
Affiliation(s)
- Kim De Veirman
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Janik Puttemans
- Department of Medical Imaging, Laboratory for in Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ahmet Krasniqi
- Department of Medical Imaging, Laboratory for in Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Thomas Ertveldt
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Heleen Hanssens
- Department of Medical Imaging, Laboratory for in Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ema Romao
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dirk Hose
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Cleo Goyvaert
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Philip Vlummens
- Department of Hematology and Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Clinical Hematology, Ghent University Hospital, Ghent, Belgium
| | - Serge Muyldermans
- Department of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Matthias D'Huyvetter
- Department of Medical Imaging, Laboratory for in Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Nick Devoogdt
- Department of Medical Imaging, Laboratory for in Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
3
|
Pisano M, Cheng Y, Sun F, Dhakal B, D’Souza A, Chhabra S, Knight JM, Rao S, Zhan F, Hari P, Janz S. Laboratory Mice - A Driving Force in Immunopathology and Immunotherapy Studies of Human Multiple Myeloma. Front Immunol 2021; 12:667054. [PMID: 34149703 PMCID: PMC8206561 DOI: 10.3389/fimmu.2021.667054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Mouse models of human cancer provide an important research tool for elucidating the natural history of neoplastic growth and developing new treatment and prevention approaches. This is particularly true for multiple myeloma (MM), a common and largely incurable neoplasm of post-germinal center, immunoglobulin-producing B lymphocytes, called plasma cells, that reside in the hematopoietic bone marrow (BM) and cause osteolytic lesions and kidney failure among other forms of end-organ damage. The most widely used mouse models used to aid drug and immunotherapy development rely on in vivo propagation of human myeloma cells in immunodeficient hosts (xenografting) or myeloma-like mouse plasma cells in immunocompetent hosts (autografting). Both strategies have made and continue to make valuable contributions to preclinical myeloma, including immune research, yet are ill-suited for studies on tumor development (oncogenesis). Genetically engineered mouse models (GEMMs), such as the widely known Vκ*MYC, may overcome this shortcoming because plasma cell tumors (PCTs) develop de novo (spontaneously) in a highly predictable fashion and accurately recapitulate many hallmarks of human myeloma. Moreover, PCTs arise in an intact organism able to mount a complete innate and adaptive immune response and tumor development reproduces the natural course of human myelomagenesis, beginning with monoclonal gammopathy of undetermined significance (MGUS), progressing to smoldering myeloma (SMM), and eventually transitioning to frank neoplasia. Here we review the utility of transplantation-based and transgenic mouse models of human MM for research on immunopathology and -therapy of plasma cell malignancies, discuss strengths and weaknesses of different experimental approaches, and outline opportunities for closing knowledge gaps, improving the outcome of patients with myeloma, and working towards a cure.
Collapse
Affiliation(s)
- Michael Pisano
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Yan Cheng
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Fumou Sun
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Binod Dhakal
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anita D’Souza
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Saurabh Chhabra
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer M. Knight
- Departments of Psychiatry, Medicine, and Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Sridhar Rao
- Division of Hematology, Oncology and Marrow Transplant, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Blood Research Institute, Versiti Wisconsin, Milwaukee, WI, United States
| | - Fenghuang Zhan
- Myeloma Center, Department of Internal Medicine and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Parameswaran Hari
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Siegfried Janz
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
4
|
Ziouti F, Rummler M, Steyn B, Thiele T, Seliger A, Duda GN, Bogen B, Willie BM, Jundt F. Prevention of Bone Destruction by Mechanical Loading Is Not Enhanced by the Bruton's Tyrosine Kinase Inhibitor CC-292 in Myeloma Bone Disease. Int J Mol Sci 2021; 22:ijms22083840. [PMID: 33917250 PMCID: PMC8067978 DOI: 10.3390/ijms22083840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton’s tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD.
Collapse
Affiliation(s)
- Fani Ziouti
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Maximilian Rummler
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (M.R.); (B.S.)
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Beatrice Steyn
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (M.R.); (B.S.)
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada
| | - Tobias Thiele
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Anne Seliger
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Georg N. Duda
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
| | - Bjarne Bogen
- Institute of Clinical Medicine, University of Oslo and Department of Immunology, Oslo University Hospital, 0424 Oslo, Norway;
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada; (M.R.); (B.S.)
- Department of Pediatric Surgery, McGill University, Montreal, QC H4A 3J1, Canada
- Julius Wolff Institute and Berlin Institute of Health Center for Regenerative Therapies, Charité−Universitätsmedizin Berlin, 13353 Berlin, Germany; (T.T.); (A.S.); (G.N.D.)
- Correspondence: (B.M.W.); (F.J.)
| | - Franziska Jundt
- Department of Internal Medicine II, University Hospital Würzburg, 97080 Würzburg, Germany;
- Comprehensive Cancer Center Mainfranken, 97080 Würzburg, Germany
- Correspondence: (B.M.W.); (F.J.)
| |
Collapse
|
5
|
Zhang S, DuBois W, Zhang K, Simmons JK, Hughitt VK, Gorjifard S, Gaikwad S, Peat TJ, Mock BA. Mouse tumor susceptibility genes identify drug combinations for multiple myeloma. ACTA ACUST UNITED AC 2020; 6. [PMID: 32923678 PMCID: PMC7486007 DOI: 10.20517/2394-4722.2020.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Long-term genetic studies utilizing backcross and congenic strain analyses coupled with positional cloning strategies and functional studies identified Cdkn2a, Mtor, and Mndal as mouse plasmacytoma susceptibility/resistance genes. Tumor incidence data in congenic strains carrying the resistance alleles of Cdkn2a and Mtor led us to hypothesize that drug combinations affecting these pathways are likely to have an additive, if not synergistic effect in inhibiting tumor cell growth. Traditional and novel systems-level genomic approaches were used to assess combination activity, disease specificity, and clinical potential of a drug combination involving rapamycin/everolimus, an Mtor inhibitor, with entinostat, an histone deacetylase inhibitor. The combination synergistically repressed oncogenic MYC and activated the Cdkn2a tumor suppressor. The identification of MYC as a primary upstream regulator led to the identification of small molecule binders of the G-quadruplex structure that forms in the NHEIII region of the MYC promoter. These studies highlight the importance of identifying drug combinations which simultaneously upregulate tumor suppressors and downregulate oncogenes.
Collapse
Affiliation(s)
- Shuling Zhang
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Wendy DuBois
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Ke Zhang
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - John K Simmons
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA.,Personal Genome Diagnostics, Baltimore, MD 21224, USA
| | - V Keith Hughitt
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sayeh Gorjifard
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA.,University of Washington School of Medicine, Department of Genome Sciences, Seattle, WA 98195, USA
| | - Snehal Gaikwad
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Tyler J Peat
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Beverly A Mock
- Laboratory of Cancer Biology and Genetics, CCR, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|