1
|
Moescheid MF, Lu Z, Soria CD, Quack T, Puckelwaldt O, Holroyd N, Holzaepfel P, Haeberlein S, Rinaldi G, Berriman M, Grevelding CG. The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Res 2024:gkae1228. [PMID: 39676663 DOI: 10.1093/nar/gkae1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Studies on transcription regulation in platyhelminth development are scarce, especially for parasitic flatworms. Here, we employed single-cell transcriptomics to identify genes involved in reproductive development in the trematode model Schistosoma mansoni. This parasite causes schistosomiasis, a major neglected infectious disease affecting >240 million people worldwide. The pathology of schistosomiasis is closely associated with schistosome eggs deposited in host organs including the liver. Unlike other trematodes, schistosomes exhibit distinct sexes, with egg production reliant on the pairing-dependent maturation of female reproductive organs. Despite this significance, the molecular mechanisms underlying ovary development and oocyte differentiation remain largely unexplored. Utilizing an organ isolation approach for S. mansoni, we extracted ovaries of paired females followed by single-cell RNA sequencing (RNA-seq) with disassociated oocytes. A total of 1967 oocytes expressing 7872 genes passed quality control (QC) filtering. Unsupervised clustering revealed four distinct cell clusters: somatic, germ cells and progeny, intermediate and late germ cells. Among distinct marker genes for each cluster, we identified a hitherto uncharacterized transcription factor of the retinoic acid receptor family, SmRAR. Functional analyses of SmRAR and associated genes like Smmeiob (meiosis-specific, oligonucleotide/oligosaccharide binding motif (OB) domain-containing) demonstrated their pairing-dependent and ovary-preferential expression and their decisive roles in oocyte differentiation of S. mansoni.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Carmen Diaz Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Pauline Holzaepfel
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Christoph G Grevelding
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
2
|
Walker AJ, Rinaldi G, Shakir EMN. Molecular interactions between male and female schistosomes - a role for remote communication? Trends Parasitol 2024:S1471-4922(24)00348-9. [PMID: 39665922 DOI: 10.1016/j.pt.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Persistent physical interaction between male and female schistosome adult worms has long been shown to be crucial for their development and sexual maturation, particularly for the female. Although not fully understood, worm pairing promotes local molecular communication between sexes, driving gonad and vitellaria differentiation. In this opinion article we (i) summarise evidence concerning molecular interactions underlying the physical pairing, and (ii) propose a new paradigm whereby remote male-female molecular communication may play an overlooked role in parasite sexual maturation. In this context we discuss recent research that supports both physical and remote male-female interactions driving differentiation of the gonads/vitellaria. This remote communication between sexes may be mediated by excretory-secretory products (ESPs). Integrated hypotheses are presented to stimulate research in this important and emerging field.
Collapse
Affiliation(s)
- Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK.
| | - Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, SY23 3DA, UK; Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Eman M N Shakir
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, UK
| |
Collapse
|
3
|
You Y, Chen X, Huo L, Chen L, Chen G, Gu M, Yi C, Wang J, Hu W. An improved medium for in vitro studies of female reproduction and oviposition in Schistosoma japonicum. Parasit Vectors 2024; 17:116. [PMID: 38454463 PMCID: PMC10918852 DOI: 10.1186/s13071-024-06191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Schistosomiasis is a disease primarily caused by eggs laid by pathogens called schistosomes. Among the schistosome species infecting humans, Schistosoma japonicum possesses the largest fecundity; each adult female produces an average of 3500 eggs per day. The lack of proper culture conditions supporting continuous oviposition in vitro has precluded detailed investigation of mechanisms regulating sexual maturation and egg production in Schistosoma japonicum. METHODS We optimized in vitro culture conditions by replacing reagents that are part of the classical ABC169 medium. Fast Blue BB staining and 4',6-diamidino-2-phenylindole (DAPI) labeling were applied to observe the sexual development status of the females. In vitro RNA interference (RNAi) technology was used to validate the capability of the modified medium. The detection of male β-alanyl-tryptamine (BATT) was conducted using liquid chromatography-mass spectrometry (LC-MS). RESULTS Both m-AB169 (1640) and AB169 (1640) media are capable of facilitating the sexual development of paired virgin female S. japonicum, as well as sustaining the mature reproductive organs and egg production of adult S. japonicum for at least 22 days in vitro. M-AB169 (1640) provided a more stable condition for supporting the sexual maturity of female S. japonicum, as evidenced by the consistent initiation of egg production compared with AB169 (1640). Through a comparative analysis of S. japonicum and S. mansoni in diverse media, we demonstrated that these closely related species display distinct demands for their sexual development and egg production, suggesting a potential influence of nutritional factors on the observed variations in host ranges among different schistosome species. Importantly, we successfully identified the presence of the pheromone β-alanyl-tryptamine (BATT) in S. japonicum, previously identified in S. mansoni, highlighting its conserved role in schistosome reproductive development. Through the employment of double-stranded RNA (dsRNA) treatment to silence two genes that are involved in either the male (gli1, glioma-associated oncogene homolog 1) or female (vf1, vitellogenic factor 1) side in male-induced female reproductive development of S. mansoni, we confirmed that the combination of m-AB169 (1640) and RNAi technology has the capacity to facilitate in vitro studies of S. japonicum's reproductive and oviposition processes. CONCLUSIONS We developed a novel medium, m-AB169 (1640), that not only maintains the mature reproductive organs and continuous oviposition of adult female Schistosoma japonicum for up to 22 days but also supports the reproductive development and subsequent egg-laying of virgin females after pairing with male worms. This study provides a valuable in vitro platform for functional studies of the mechanisms underlying the fascinating biology of the female sexual development and egg production of S. japonicum, which may accelerate the development of new strategies targeting schistosome egg production.
Collapse
Affiliation(s)
- Yanmin You
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xu Chen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lele Huo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, China
| | - Longlong Chen
- Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Gongwen Chen
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Mengjie Gu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research On Tropical Diseases, Shanghai, China.
| |
Collapse
|
4
|
Li X, Weth O, Haimann M, Möscheid MF, Huber TS, Grevelding CG. Rhodopsin orphan GPCR20 interacts with neuropeptides and directs growth, sexual differentiation, and egg production in female Schistosoma mansoni. Microbiol Spectr 2024; 12:e0219323. [PMID: 38047698 PMCID: PMC10783048 DOI: 10.1128/spectrum.02193-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/17/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE Schistosomes cause schistosomiasis, one of the neglected tropical diseases as defined by the WHO. For decades, the treatment of schistosomiasis relies on a single drug, praziquantel. Due to its wide use, there is justified fear of resistance against this drug, and a vaccine is not available. Besides its biological relevance in signal transduction processes, the class of G protein-coupled receptors (GPCRs) is also well suited for drug design. Against this background, we characterized one GPCR of Schistosoma mansoni, SmGPCR20, at the molecular and functional level. We identified two potential neuropeptides (NPPs) as ligands, SmNPP26 and SmNPP40, and unraveled their roles, in combination with SmGPCR20, in neuronal processes controlling egg production, oogenesis, and growth of S. mansoni females. Since eggs are closely associated with the pathogenesis of schistosomiasis, our results contribute to the understanding of processes leading to egg production in schistosomes, which is under the control of pairing in this exceptional parasite.
Collapse
Affiliation(s)
- Xuesong Li
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Weth
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Martin Haimann
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Max F. Möscheid
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Theresa S. Huber
- Institute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
5
|
Rinaldi G, Paz Meseguer C, Cantacessi C, Cortés A. Form and Function in the Digenea, with an Emphasis on Host-Parasite and Parasite-Bacteria Interactions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1454:3-45. [PMID: 39008262 DOI: 10.1007/978-3-031-60121-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
Collapse
Affiliation(s)
- Gabriel Rinaldi
- Department of Life Sciences, Edward Llwyd Building, Aberystwyth University, Aberystwyth, UK
| | - Carla Paz Meseguer
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain
| | - Cinzia Cantacessi
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alba Cortés
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, School of Pharmacy and Food Sciences, Universitat de València, Valencia, Spain.
| |
Collapse
|
6
|
Cheng S, You Y, Wang X, Yi C, Zhang W, Xie Y, Xiu L, Luo F, Lu Y, Wang J, Hu W. Dynamic profiles of lncRNAs reveal a functional natural antisense RNA that regulates the development of Schistosoma japonicum. PLoS Pathog 2024; 20:e1011949. [PMID: 38285715 PMCID: PMC10878521 DOI: 10.1371/journal.ppat.1011949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/20/2024] [Accepted: 01/06/2024] [Indexed: 01/31/2024] Open
Abstract
Schistosomes are flatworm parasites that undergo a complex life cycle involving two hosts. The regulation of the parasite's developmental processes relies on both coding RNAs and non-coding RNAs. However, the roles of non-coding RNAs, including long non-coding RNAs (lncRNAs) in schistosomes remain largely unexplored. Here we conduct advanced RNA sequencing on male and female S. japonicum during their pairing and reproductive development, resulting in the identification of nearly 8,000 lncRNAs. This extensive dataset enables us to construct a comprehensive co-expression network of lncRNAs and mRNAs, shedding light on their interactions during the crucial reproductive stages within the mammalian host. Importantly, we have also revealed a specific lncRNA, LNC3385, which appears to play a critical role in the survival and reproduction of the parasite. These findings not only enhance our understanding of the dynamic nature of lncRNAs during the reproductive phase of schistosomes but also highlight LNC3385 as a potential therapeutic target for combating schistosomiasis.
Collapse
Affiliation(s)
- Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanmin You
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoling Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuxiang Xie
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Xiu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jipeng Wang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- College of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Li X, Weth O, Haeberlein S, Grevelding CG. Molecular characterization of Sm tdc-1 and Sm ddc-1 discloses roles as male-competence factors for the sexual maturation of Schistosoma mansoni females. Front Cell Infect Microbiol 2023; 13:1173557. [PMID: 37305409 PMCID: PMC10252128 DOI: 10.3389/fcimb.2023.1173557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Schistosomes are the only mammalian flatworms that have evolved separate sexes. A key question of schistosome research is the male-dependent sexual maturation of the female since a constant pairing contact with a male is required for the onset of gonad development in the female. Although this phenomenon is long known, only recently a first peptide-based pheromone of males was identified that contributes to the control of female sexual development. Beyond this, our understanding of the molecular principles inducing the substantial developmental changes in a paired female is still rudimentary. Objectives Previous transcriptomic studies have consistently pointed to neuronal genes being differentially expressed and upregulated in paired males. These genes included Smp_135230 and Smp_171580, both annotated as aromatic-L-amino-acid decarboxylases (DOPA decarboxylases). Here, we characterized both genes and investigated their roles in male-female interaction of S. mansoni. Methodologies/findings Sequence analyses indicated that Smp_135230 represents an L-tyrosine decarboxylase (Smtdc-1), whereas Smp_171580 represents a DOPA decarboxylase (Smddc-1). By qRT-PCR, we confirmed the male-specific and pairing-dependent expression of both genes with a significant bias toward paired males. RNA-interference experiments showed a strong influence of each gene on gonad differentiation in paired females, which was enhanced by double knockdown. Accordingly, egg production was significantly reduced. By confocal laser scanning microscopy, a failure of oocyte maturation was found in paired knockdown females. Whole-mount in situ hybridization patterns exhibited the tissue-specific occurrence of both genes in particular cells at the ventral surface of the male, the gynecophoral canal, which represents the physical interface of both genders. These cells probably belong to the predicted neuronal cluster 2 of S. mansoni. Conclusion Our results suggest that Smtdc-1 and Smddc-2 are male-competence factors that are expressed in neuronal cells at the contact zone between the genders as a response of pairing to subsequently control processes of female sexual maturation.
Collapse
Affiliation(s)
| | | | | | - Christoph G. Grevelding
- Institute for Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| |
Collapse
|
8
|
Silveira GO, Coelho HS, Pereira ASA, Miyasato PA, Santos DW, Maciel LF, Olberg GGG, Tahira AC, Nakano E, Oliveira MLS, Amaral MS, Verjovski-Almeida S. Long non-coding RNAs are essential for Schistosoma mansoni pairing-dependent adult worm homeostasis and fertility. PLoS Pathog 2023; 19:e1011369. [PMID: 37146077 DOI: 10.1371/journal.ppat.1011369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/17/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023] Open
Abstract
The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females' obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.
Collapse
Affiliation(s)
- Gilbert O Silveira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Helena S Coelho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Adriana S A Pereira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Patrícia A Miyasato
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Daisy W Santos
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Lucas F Maciel
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Giovanna G G Olberg
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ana C Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Murilo S Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, São Paulo, Brazil
- Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Sex-inducing effects toward planarians widely present among parasitic flatworms. iScience 2022; 26:105776. [PMID: 36594009 PMCID: PMC9804148 DOI: 10.1016/j.isci.2022.105776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/28/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Various parasitic flatworms infect vertebrates for sexual reproduction, often causing devastating diseases in their hosts. Consequently, flatworms are of great socioeconomic and biomedical importance. Although the cessation of parasitic flatworm sexual reproduction is a major target of anti-parasitic drug design, little is known regarding bioactive compounds controlling flatworm sexual maturation. Using the planarian Dugesia ryukyuensis, we observed that sex-inducing substances found in planarians are also widespread in parasitic flatworms, such as monogeneans and flukes (but not in tapeworms). Reverse-phase HPLC analysis revealed the sex-inducing substance(s) eluting around the tryptophan retention time in the fluke Calicophoron calicophorum, consistent with previous studies on the planarian Bipalium nobile, suggesting that the substance(s) is likely conserved among flatworms. Moreover, six of the 18 ovary-inducing substances identified via transcriptome and metabolome analyses are involved in purine metabolism. Our findings provide a basis for understanding and modifying the life cycles of various parasitic flatworms.
Collapse
|
10
|
Ren Y, Li M, Shi Y, Liu P, Wu Q, Yang Y, Zhang L, Jin Y. Schistosoma japonicum proteins that interact with the gynecophoral canal protein identified using a yeast two-hybrid system. Exp Parasitol 2022; 239:108305. [PMID: 35714725 DOI: 10.1016/j.exppara.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
The large amount of schistosome eggs produced by mature female worms not only induce major pathological damage to the host but also lead to the transmission of schistosomiasis. Mature female schistosome worms need constant pairing contact with a male partner as male signaling is indispensable to female growth, development, and reproduction. The gynecophoral canal protein (GCP), a cell-surface glycoprotein, plays a potential role in the interaction between males and females and in stimulating female development and maturation. In this study, a yeast two-hybrid cDNA library of Schistosoma japonicum (Sj) parasites 18 days post-infection (dpi) was constructed; the Sjgcp gene was inserted into a pGBKT7-BD bait plasmid and used as a bait protein to screen for its molecular interactions using a yeast mating procedure. Twenty-four prey proteins that interacted with the SjGCP were selected after excluding false positives; the interactions between S.japonicum lethal giant larvae (SjLGL) and SjGCP, S.japonicum type V collagen (SjColV) and SjGCP, were verified by co-immunoprecipitation. The RNA interference against SjGCP, SjColV and SjGCP + SjColV led to severe underdevelopment of tegument in male worms and vitelline globules in female worms as well as reduced reproductive capacity of the females. Collectively, SjGCP and its interacting proteins may play pivotal roles in growth and development. The findings also suggested that SjGCP and its interacting protein partners might represent new candidate targets for drug development against schistosomiasis.
Collapse
Affiliation(s)
- Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mian Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanli Shi
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pingping Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qijin Wu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yunxia Yang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
11
|
Chen R, Wang J, Gradinaru I, Vu HS, Geboers S, Naidoo J, Ready JM, Williams NS, DeBerardinis RJ, Ross EM, Collins JJ. A male-derived nonribosomal peptide pheromone controls female schistosome development. Cell 2022; 185:1506-1520.e17. [PMID: 35385687 PMCID: PMC9058237 DOI: 10.1016/j.cell.2022.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/18/2022] [Accepted: 03/11/2022] [Indexed: 11/23/2022]
Abstract
Schistosomes cause morbidity and death throughout the developing world due to the massive numbers of eggs female worms deposit into the blood of their host. Studies dating back to the 1920s show that female schistosomes rely on constant physical contact with a male worm both to become and remain sexually mature; however, the molecular details governing this process remain elusive. Here, we uncover a nonribosomal peptide synthetase that is induced in male worms upon pairing with a female and find that it is essential for the ability of male worms to stimulate female development. We demonstrate that this enzyme generates β-alanyl-tryptamine that is released by paired male worms. Furthermore, synthetic β-alanyl-tryptamine can replace male worms to stimulate female sexual development and egg laying. These data reveal that peptide-based pheromone signaling controls female schistosome sexual maturation, suggesting avenues for therapeutic intervention and uncovering a role for nonribosomal peptides as metazoan signaling molecules.
Collapse
Affiliation(s)
- Rui Chen
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jipeng Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China; Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200438, People's Republic of China
| | - Irina Gradinaru
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hieu S Vu
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sophie Geboers
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jacinth Naidoo
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joseph M Ready
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Elliott M Ross
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - James J Collins
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
12
|
Stitz M, Chaparro C, Lu Z, Olzog VJ, Weinberg CE, Blom J, Goesmann A, Grunau C, Grevelding CG. Satellite-Like W-Elements: Repetitive, Transcribed, and Putative Mobile Genetic Factors with Potential Roles for Biology and Evolution of Schistosoma mansoni. Genome Biol Evol 2021; 13:6361599. [PMID: 34469545 PMCID: PMC8490949 DOI: 10.1093/gbe/evab204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/17/2022] Open
Abstract
A large portion of animal and plant genomes consists of noncoding DNA. This part includes tandemly repeated sequences and gained attention because it offers exciting insights into genome biology. We investigated satellite-DNA elements of the platyhelminth Schistosoma mansoni, a parasite with remarkable biological features. Schistosoma mansoni lives in the vasculature of humans causing schistosomiasis, a disease of worldwide importance. Schistosomes are the only trematodes that have evolved separate sexes, and the sexual maturation of the female depends on constant pairing with the male. The schistosome karyotype comprises eight chromosome pairs, males are homogametic (ZZ) and females are heterogametic (ZW). Part of the repetitive DNA of S. mansoni are W-elements (WEs), originally discovered as female-specific satellite DNAs in the heterochromatic block of the W-chromosome. Based on new genome and transcriptome data, we performed a reanalysis of the W-element families (WEFs). Besides a new classification of 19 WEFs, we provide first evidence for stage-, sex-, pairing-, gonad-, and strain-specific/preferential transcription of WEs as well as their mobile nature, deduced from autosomal copies of full-length and partial WEs. Structural analyses suggested roles as sources of noncoding RNA-like hammerhead ribozymes, for which we obtained functional evidence. Finally, the variable WEF occurrence in different schistosome species revealed remarkable divergence. From these results, we propose that WEs potentially exert enduring influence on the biology of S. mansoni. Their variable occurrence in different strains, isolates, and species suggests that schistosome WEs may represent genetic factors taking effect on variability and evolution of the family Schistosomatidae.
Collapse
Affiliation(s)
- Maria Stitz
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Cristian Chaparro
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Giessen, Germany
| | - Christoph Grunau
- IHPE, CNRS, IFREMER, UPVD, University Montpellier, Perpignan, France
| | | |
Collapse
|
13
|
Mughal MN, Grevelding CG, Haeberlein S. First insights into the autophagy machinery of adult Schistosoma mansoni. Int J Parasitol 2021; 51:571-585. [PMID: 33713647 DOI: 10.1016/j.ijpara.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a disease of global importance caused by parasitic flatworms, schistosomes, which cause pathogenicity through eggs laid by the female worm inside the host's blood vessels. Maintenance of cellular homeostasis is crucial for parasites, as for other organisms, and is quite likely important for schistosome reproduction and vitality. We hypothesize a role for autophagy in these processes, an evolutionarily conserved and essential cellular degradation pathway. Here, for the first known time, we shed light on the autophagy machinery and its involvement in pairing-dependent processes, vitality and reproduction of Schistosoma mansoni. We identified autophagy genes by in silico analyses and determined the influence of in vitro culture on the transcriptional expression in male and female worms using quantitative real-time PCR. Among the identified autophagy genes were Beclin, Ambra1, Vps34, DRAM, DAP1, and LC3B, of which some showed a sex-dependent expression. Specifically, the death-associated protein DAP1 was significantly more highly expressed in females compared with males, while for the damage-regulated autophagy modulator DRAM it was the opposite. Furthermore, in-vitro culture significantly changed the transcript expression level of DAP1 in female worms. Next, worms were treated with an autophagy inducer (rapamycin) or inhibitors (bafilomycin A1, wortmannin and spautin-1) to evaluate effects on autophagy protein expression, worm vitality, and reproduction. The conversion of the key autophagy protein LC3B, a marker for autophagic activity, was increased by rapamycin and blocked by bafilomycin. All inhibitors affected worm fitness, egg production, and negatively affected the morphology of gonads and intestine. In summary, autophagy genes in S. mansoni show an interesting sex-dependent expression pattern and manipulation of autophagy in S. mansoni by inhibitors induced detrimental effects, which encourages subsequent studies to identify antischistosomal targets within the autophagy machinery.
Collapse
Affiliation(s)
- Mudassar N Mughal
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany.
| |
Collapse
|
14
|
Maciel LF, Morales-Vicente DA, Verjovski-Almeida S. Dynamic Expression of Long Non-Coding RNAs Throughout Parasite Sexual and Neural Maturation in Schistosoma japonicum. Noncoding RNA 2020; 6:E15. [PMID: 32244675 PMCID: PMC7344908 DOI: 10.3390/ncrna6020015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 02/07/2023] Open
Abstract
Schistosoma japonicum is a flatworm that causes schistosomiasis, a neglected tropical disease. S. japonicum RNA-Seq analyses has been previously reported in the literature on females and males obtained during sexual maturation from 14 to 28 days post-infection in mouse, resulting in the identification of protein-coding genes and pathways, whose expression levels were related to sexual development. However, this work did not include an analysis of long non-coding RNAs (lncRNAs). Here, we applied a pipeline to identify and annotate lncRNAs in 66 S. japonicum RNA-Seq publicly available libraries, from different life-cycle stages. We also performed co-expression analyses to find stage-specific lncRNAs possibly related to sexual maturation. We identified 12,291 S. japonicum expressed lncRNAs. Sequence similarity search and synteny conservation indicated that some 14% of S. japonicum intergenic lncRNAs have synteny conservation with S. mansoni intergenic lncRNAs. Co-expression analyses showed that lncRNAs and protein-coding genes in S. japonicum males and females have a dynamic co-expression throughout sexual maturation, showing differential expression between the sexes; the protein-coding genes were related to the nervous system development, lipid and drug metabolism, and overall parasite survival. Co-expression pattern suggests that lncRNAs possibly regulate these processes or are regulated by the same activation program as that of protein-coding genes.
Collapse
Affiliation(s)
- Lucas F. Maciel
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Programa Interunidades em Bioinformática, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | - David A. Morales-Vicente
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo SP 05503-900, Brazil (D.A.M.-V.)
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo SP 05508-900, Brazil
| |
Collapse
|
15
|
Towards deorphanizing G protein-coupled receptors of Schistosoma mansoni using the MALAR yeast two-hybrid system. Parasitology 2019; 147:865-872. [PMID: 31840628 PMCID: PMC7284817 DOI: 10.1017/s0031182019001756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schistosomiasis is an acute and chronic disease caused by parasitic worms of the genus Schistosoma. Treatment is solely dependent on praziquantel. In the face of the worldwide dimension, projects have been initiated to develop new chemotherapies. Due to their proven druggability, G protein-coupled receptors (GPCRs) are promising targets for anthelmintics. However, to identify candidate receptors, a deeper understanding of GPCR signalling in schistosome biology is essential. Comparative transcriptomics of paired and unpaired worms and their gonads revealed 59 differentially regulated GPCR-coding genes putatively involved in neuronal processes. In general, the diversity among GPCRs and their integral membrane topology make it difficult to characterize and deorphanize these receptors. To overcome existing limitations, we performed a pilot approach and utilized the innovative Membrane-Anchored Ligand And Receptor yeast two-hybrid system (MALAR-Y2H) to associate potential neuropeptide ligands with their cognate receptors. Here, we demonstrated the ability to express full-length GPCRs of Schistosoma mansoni in a heterologous yeast-based system. Additionally, we localized GPCRs and chimeras of neuropeptides fused to the WBP1 transmembrane domain of yeast to the plasma membrane of yeast cells. Reporter gene assays indicated ligand-receptor binding, which allowed us to identify certain neuropeptides as potential ligands for two GPCRs, which had been found before to be differentially expressed in schistosomes in a pairing-dependent manner. Thus, the MALAR-Y2H system appears suitable to unravel schistosome GPCR–ligand interactions. Besides its relevance for understanding schistosome biology, identifying and characterizing GPCR–ligand interaction will also contribute to applied research aspects.
Collapse
|