1
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Zhu Y, Yu Z, Xu R, Wang B, Lou Y, Zhang N, Chen Z. Associations of serum high-sensitivity C-reactive protein and prealbumin with coronary vessels stenosis determined by coronary angiography and heart failure in patients with myocardial infarction. J Med Biochem 2023; 42:9-15. [PMID: 36819129 PMCID: PMC9921086 DOI: 10.5937/jomb0-37847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
Background To explore the associations of serum high-sensitivity C-reactive protein (hs-CRP) and prealbumin (PAB) with the number of diseased coronary vessels, degree of stenosis and heart failure in patients with myocardial infarction (MI). Methods A total of 39 MI patients treated in the Cardiology were selected as the observation group, and another 41 patients with normal results of coronary angiography during the same period were selected as the control group. The general data of patients were recorded in detail, the content of serum hs-CRP and PAB in the peripheral blood was detected, and the number of diseased coronary vessels and the degree of stenosis were detected via coronary angiography. Results Compared with those in control group, the blood pressure and heart rate significantly rose, the content of indexes related to the severity of MI were significantly increased, the content of hs-CRP was significantly increased, and the content of PAB was significantly decreased in observation group. Hs-CRP was positively correlated with the number of diseased coronary vessels, degree of stenosis and heart failure in patients, but PAB was negatively correlated with the above factors. The survival rate of MI patients with high content of hs-CRP was obviously lower than that of patients with low content of hsCRP. Conclusions Serum hs-CRP and PAB are closely associated with the number of diseased coronary vessels, degree of stenosis and heart failure in MI patients.
Collapse
Affiliation(s)
- Yun Zhu
- Xianju County Peoples Hospital, Department of Cardiovascular Medicine, Taizhou, China
| | - Zhen Yu
- Jinan Central Hospital, Department of Centralized Dispensing of Intravenous Drugs, Jinan, China
| | - Ronggui Xu
- Xianju County Peoples Hospital, China, Department of Cardiovascular Medicine, Taizhou
| | - Beibei Wang
- Xianju County Peoples Hospital, China, Department of Cardiovascular Medicine, Taizhou
| | - Yiqun Lou
- Xianju County Peoples Hospital, China, Department of Cardiovascular Medicine, Taizhou
| | - Na Zhang
- Xianju County Peoples Hospital, China, Department of Cardiovascular Medicine, Taizhou
| | - Ziyin Chen
- Xianju County Peoples Hospital, China, Department of Cardiovascular Medicine, Taizhou
| |
Collapse
|
3
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Identification and functional analysis of genetic variants of ISL1 gene promoter in human atrial septal defects. J Gene Med 2022; 24:e3450. [PMID: 36170181 DOI: 10.1002/jgm.3450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Atrial septal defect (ASD) is a common type of congenital heart disease. A gene promoter plays pivotal role in the disease development. This study was designed to investigate the pathological role of variants of the ISL1 gene promoter region in ASD patients. METHODS Total DNA extracted from 625 subjects, including 332 ASD patients and 293 healthy controls, was sequenced to identify variants in the promoter region of ISL1 gene. Further functional analyses of the variants were performed with dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). All possible binding sites of transcription factor affected by the identified variants were predicted using the JASPAR database. RESULTS Four variants in the ISL1 gene promoter were found only in patients with ASD by sequencing. Three of the four variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] significantly decreased the transcriptional activities compared with the wild-type ISL1 gene promoter (p < 0.05). The EMSA revealed that these variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] in the ISL1 gene promoter affected the number and affinity of binding sites of transcription factors. Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants. CONCLUSIONS These sequence variants identified from the promoter region of ISL1 gene in ASD patients are probably involved in the development of ASD by affecting the transcriptional activity and altering ISL1 levels. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of ASD.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhuo Chen
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
4
|
Khazamipour A, Gholampour-Faroji N, Zeraati T, Vakilian F, Haddad-Mashadrizeh A, Ghayour Mobarhan M, Pasdar A. A novel causative functional mutation in GATA6 gene is responsible for familial dilated cardiomyopathy as supported by in silico functional analysis. Sci Rep 2022; 12:13752. [PMID: 35962153 PMCID: PMC9374661 DOI: 10.1038/s41598-022-13993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Dilated cardiomyopathy (DCM), one of the most common types of cardiomyopathies has a heterogeneous nature and can be seen in Mendelian forms. Next Generation Sequencing is a powerful tool for identifying novel variants in monogenic disorders. We used whole-exome sequencing (WES) and Sanger sequencing techniques to identify the causative mutation of DCM in an Iranian pedigree. We found a novel variant in the GATA6 gene, leading to substituting Histidine by Tyrosine at position 329, observed in all affected family members in the pedigree, whereas it was not established in any of the unaffected ones. We hypothesized that the H329Y mutation may be causative for the familial pattern of DCM in this family. The predicted models of GATA6 and H329Y showed the high quality according to PROCHECK and ERRAT. Nonetheless, simulation results revealed that the protein stability decreased after mutation, while the flexibility may have been increased. Hence, the mutation led to the increased compactness of GATA6. Overall, these data indicated that the mutation could affect the protein structure, which may be related to the functional impairment of GATA6 upon H329Y mutation, likewise their involvement in pathologies. Further functional investigations would help elucidating the exact mechanism.
Collapse
Affiliation(s)
- Afrouz Khazamipour
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nazanin Gholampour-Faroji
- Biotechnology Department, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Tina Zeraati
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerosis Prevention Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aliakbar Haddad-Mashadrizeh
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Alireza Pasdar
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen, UK. .,Bioinformatics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Lou Q, Guo N, Huang W, Wu L, Su M, Liu Y, Liu X, Li B, Yang Y, Gao Y. Association between Bone Morphogenetic Protein 2 Gene Polymorphisms and Skeletal Fluorosis of The Brick-tea Type Fluorosis in Tibetans and Kazakhs, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:1489-1499. [PMID: 33660557 DOI: 10.1080/09603123.2021.1892037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
To investigate the potential association between BMP2 single nucleotide polymorphisms (SNPs) and brick-tea-type skeletal fluorosis risk in cross-sectional case-control study conducted in Sinkiang and Qinghai, China, a total of 598 individuals, including 308 Tibetans and 290 Kazakhs, were enrolled. Using the standard WS/192-2008 (China), 221 skeletal fluorosis cases were diagnosed, including 123 Tibetans and 98 Kazakhs. Logistic regressions 2 analysis did not find the association between SNPs (Rs235764, Rs235739 and Rs996544) and skeletal fluorosis. Genetic models, linkage disequilibrium (LD) and haplotype analysis were not found to be associated with risk of skeletal fluorosis after adjustment by age and sex (P>0.05).Our data suggested that Rs 235764, Rs 235739 and Rs 996544 were not linked susceptibility for skeletal fluorosis in our cross-sectional case-control study.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Ning Guo
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Wei Huang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Liaowei Wu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Mengyao Su
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Yang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Bingyun Li
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, China
- Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin Medical University, Harbin, China
- Heilongjiang Provincial Key Lab of Trace Elements and Human Health Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Ilie DE, Mizeranschi AE, Mihali CV, Neamț RI, Goilean GV, Georgescu OI, Zaharie D, Carabaș M, Huțu I. Genome-Wide Association Studies for Milk Somatic Cell Score in Romanian Dairy Cattle. Genes (Basel) 2021; 12:genes12101495. [PMID: 34680890 PMCID: PMC8535694 DOI: 10.3390/genes12101495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 02/07/2023] Open
Abstract
Mastitis is one of the most frequently encountered diseases in dairy cattle, negatively affecting animal welfare and milk production. For this reason, contributions to understanding its genomic architecture are of great interest. Genome-wide association studies (GWAS) have identified multiple loci associated with somatic cell score (SCS) and mastitis in cattle. However, most of the studies have been conducted in different parts of the world on various breeds, and none of the investigations have studied the genetic architecture of mastitis in Romanian dairy cattle breeds up to this point in time. In this study, we report the first GWAS for SCS in dairy cattle breeds from Romania. For GWAS, we used an Axiom Bovine v3 SNP-chip (>63,000 Single Nucleotide Polymorphism -SNPs) and 33,330 records from 690 cows belonging to Romanian Spotted (RS) and Romanian Brown (RB) cattle. The results found one SNP significantly associated with SCS in the RS breed and 40 suggestive SNPs with -log10 (p) from 4 to 4.9 for RS and from 4 to 5.4 in RB. From these, 14 markers were located near 12 known genes (AKAP8, CLHC1, MEGF10, SATB2, GATA6, SPATA6, COL12A1, EPS8, LUZP2, RAMAC, IL12A and ANKRD55) in RB cattle, 3 markers were close to ZDHHC19, DAPK1 and MMP7 genes, while one SNP overlapped the HERC3 gene in RS cattle. Four genes (HERC3, LUZP2, AKAP8 and MEGF10) associated with SCS in this study were previously reported in different studies. The most significant SNP (rs110749552) associated with SCS was located within the HERC3 gene. In both breeds, the SNPs and position of association signals were distinct among the three parities, denoting that mastitis is controlled by different genes that are dependent according to parity. The current results contribute to an expansion in the body of knowledge regarding the proportion of genetic variability explained by SNPs for SCS in dairy cattle.
Collapse
Affiliation(s)
- Daniela Elena Ilie
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
- Correspondence:
| | - Alexandru Eugeniu Mizeranschi
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ciprian Valentin Mihali
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Radu Ionel Neamț
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - George Vlad Goilean
- The Molecular Research Department, Research and Development Station for Bovine Arad, Bodrogului Street, No. 32, 310059 Arad, Romania; (A.E.M.); (C.V.M.); (R.I.N.); (G.V.G.)
| | - Ovidiu Ionuț Georgescu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| | - Daniela Zaharie
- Faculty of Mathematics and Computer Science, West University of Timișoara, 300223 Timisoara, Romania;
| | - Mihai Carabaș
- Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest, 060042 București, Romania;
| | - Ioan Huțu
- Faculty of Veterinary Medicine, Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Calea Aradului No. 119, 300645 Timisoara, Romania; (O.I.G.); (I.H.)
| |
Collapse
|
7
|
Song Z, Chen L, Pang S, Yan B. Molecular genetic study on GATA5 gene promoter in acute myocardial infarction. PLoS One 2021; 16:e0248203. [PMID: 33684162 PMCID: PMC7939267 DOI: 10.1371/journal.pone.0248203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background Acute myocardial infarction (AMI) is a severe type of coronary artery disease, caused by coronary occlusion and followed by cardiac ischaemia. GATA binding protein 5 (GATA5) is an important member of GATA family and plays an important role in vascular inflammation, endothelial function, oxidative stress and cell metabolism. Previous studies have shown that the DNA sequence variants (DSVs) in GATA4 and GATA6 promoter can increase susceptibility to AMI. In this study, we explored the relationship between GATA5 promoter and AMI for the first time, hoping to provide a new genetic basis for understanding the pathogenesis of AMI. Methods GATA5 promoter was sequenced in 683 individuals (332 AMI patients and 351 controls). The transcriptional activity of the GATA5 promoter with or without DSVs in HEK-293 cells, H9c2 cells and primary neonatal rat cardiomyocytes were examined by Promega Dual-Luciferase® Reporter Assay system. Electrophoretic mobility shift assay (EMSA) was performed to explore whether the DSVs interfered with the binding of transcription factors (TFs). Results Nine mutations have been found in GATA5 promoter, eight of them evidently altered the transcriptional activity of the GATA5 promoter, five of them disrupted the binding of TFs (such as farnesoid X receptor). Furthermore, haplotype AT (across rs80197101 and rs77067995) is a dangerous haplotype of AMI. Genotype GA and allele A of rs80197101 and genotype CT and allele T of rs77067995 are the risk factors of AMI. Conclusions DSVs in GATA5 promoter can increase susceptibility to AMI. But the mechanism remains to be verified in vivo.
Collapse
Affiliation(s)
- Zhipeng Song
- Department of Medicine, Shandong University School of Medicine, Jinan, Shandong, China
| | - Lu Chen
- Center for Molecular Medicine, Yanzhou People’s Hospital, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
| | - Bo Yan
- Center for Molecular Medicine, Yanzhou People’s Hospital, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong, China
- * E-mail:
| |
Collapse
|
8
|
Yang J, Lu P, Li M, Yan C, Zhang T, Jiang W. GATA6-AS1 Regulates GATA6 Expression to Modulate Human Endoderm Differentiation. Stem Cell Reports 2020; 15:694-705. [PMID: 32795420 PMCID: PMC7486217 DOI: 10.1016/j.stemcr.2020.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/14/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Transcriptome analysis has uncovered a series of long noncoding RNAs (lncRNAs) transcribed during cell differentiation, but how lncRNA is integrated with known transcriptional regulatory network is poorly understood. Here, we utilize human definitive endoderm differentiation as a model system and decipher the functional interaction between lncRNA and key transcriptional factor. We have identified GATA6-AS1, an lncRNA divergently transcribed from the GATA6 locus, is highly expressed during endoderm differentiation. Knockdown of GATA6-AS1 in human pluripotent stem cells has no influence on morphology and pluripotency; however, GATA6-AS1 depletion causes the deficiency of definitive endoderm differentiation. GATA6-AS1 positively regulates the expression of endoderm key factor GATA6. Further investigation shows GATA6-AS1 interacts with SMAD2/3 and activates the transcription of GATA6. In addition, overexpression of GATA6 is able to rescue the defect of endoderm differentiation due to the absence of GATA6-AS1, suggesting that GATA6 is the functional target of GATA6-AS1 during endoderm differentiation. Ultimately, our study reveals that GATA6-AS1 is necessary for human endoderm specification and reveals the underlying mechanism between GATA6-AS1 and GATA6. GATA6-AS1 is a lncRNA highly expressed in human endoderm with two isoforms GATA6-AS1 controls human endoderm differentiation through regulating GATA6 GATA6-AS1 regulates GATA6, the functional target in endoderm differentiation GATA6-AS1 is required for SMAD2/3-mediated GATA6 transcriptional activation
Collapse
Affiliation(s)
- Jie Yang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Pei Lu
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Mao Li
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chenchao Yan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China; Human Genetics Resource Preservation Center of Wuhan University, Wuhan 430071, China.
| |
Collapse
|