1
|
Chen J, Bai Y, Huang Y, Cui M, Wang Y, Gu Z, Wu X, Li Y, Rong YS. The Ptch/SPOUT1 methyltransferase deposits an m 3U modification on 28 S rRNA for normal ribosomal function in flies and humans. SCIENCE ADVANCES 2024; 10:eadr1743. [PMID: 39671501 PMCID: PMC11641110 DOI: 10.1126/sciadv.adr1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 12/15/2024]
Abstract
The ribosomal RNA (rRNA) is one of the most heavily modified RNA species in nature. Although we have advanced knowledge of the sites, functions, and the enzymology of many of the rRNA modifications from all kingdoms of life, we lack basic understanding of many of those that are not universally present. A single N3 modified uridine base (m3U) was identified to be present on the 28S rRNA from humans and frogs but absent in bacteria or yeast. Here, we show that the equivalent m3U is present in Drosophila and that the Ptch/CG12128 enzyme and its human homolog SPOUT1 are both necessary and sufficient for carrying out the modification. The Ptch-modified U is at a functional center of the large ribosomal subunit, and, consistently, ptch-mutant cells suffer loss of ribosomal functions. SPOUT1, suggested to be the most druggable RNA methyltransferases in humans, represents a unique target where ribosomal functions could be specifically compromised in cancer cells.
Collapse
Affiliation(s)
- Jie Chen
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yaofu Bai
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yuantai Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, China
| | - Min Cui
- School of Public Health, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yiqing Wang
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Zhenqi Gu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Xiaolong Wu
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| | - Yubin Li
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yikang S. Rong
- MOE Key Lab of Rare Pediatric Diseases, Hengyang College of Medicine, University of South China, Hengyang, China
| |
Collapse
|
2
|
Phatinuwat K, Atichartpongkul S, Jumpathong W, Mongkolsuk S, Fuangthong M. 16S rRNA methyltransferase KsgA contributes to oxidative stress and antibiotic resistance in Pseudomonas aeruginosa. Sci Rep 2024; 14:26484. [PMID: 39489773 PMCID: PMC11532479 DOI: 10.1038/s41598-024-78296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024] Open
Abstract
Ribosomal RNA (rRNA) modifications are involved in multiple biological processes. KsgA is a 16S rRNA adenine dimethyltransferase that methylates at the adenines 1518 and 1519 (A1518/1519) positions, which are located near the ribosome decoding center. These methylations are conserved and important for ribosome biogenesis and protein translation. In this study, we demonstrated the absence of A1518/1519 methylation in the 16S rRNA of a Pseudomonas aeruginosa ksgA mutant. Biolog phenotypic microarrays were used to screen the phenotypes of the ksgA mutant against various antimicrobial agents. The loss of ksgA led to increased sensitivity to menadione, a superoxide generator, which was, at least in part, attributed to decreased in a superoxide dismutase (SOD) activity. Interestingly, the decrease in SOD activity in the ksgA mutant was linked to a decrease in the SodM protein levels, but not the sodM mRNA levels. Furthermore, the ksgA mutant strain exhibited sensitivity to hygromycin B and tylosin antibiotics. The tylosin-sensitive phenotype was correlated with decreased transcriptional levels of tufA, tufB, and tsf, which encode elongation factors. Additionally, the ksgA mutant showed resistance to kasugamycin. Collectively, these findings highlight the role of KsgA in oxidative stress responses and antibiotic sensitivity in P. aeruginosa.
Collapse
Affiliation(s)
- Kamonwan Phatinuwat
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand
| | | | | | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Mayuree Fuangthong
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Bangkok, Thailand.
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
3
|
Saikia B, Riquelme-Barrios S, Carell T, Brameyer S, Jung K. Depletion of m 6A-RNA in Escherichia coli reduces the infectious potential of T5 bacteriophage. Microbiol Spectr 2024; 12:e0112424. [PMID: 39422505 PMCID: PMC11619597 DOI: 10.1128/spectrum.01124-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant internal modification of mRNA in eukaryotes that plays, among other mechanisms, an essential role in virus replication. However, the understanding of m6A-RNA modification in prokaryotes, especially in relation to phage replication, is limited. To address this knowledge gap, we investigated the effects of m6A-RNA modifications on phage replication in two model organisms: Vibrio campbellii BAA-1116 (previously Vibrio harveyi BB120) and Escherichia coli MG1655. An m6A-RNA-depleted V. campbellii mutant (ΔrlmFΔrlmJ) did not differ from the wild type in the induction of lysogenic phages or in susceptibility to the lytic Virtus phage. In contrast, the infection potential of the T5 phage, but not that of other T phages or the lambda phage, was reduced in an m6A-RNA-depleted E. coli mutant (ΔrlmFΔrlmJ) compared to the wild type. This was shown by a lower plaquing efficiency and a higher percentage of surviving cells. There were no differences in the T5 phage adsorption rate, but the mutant exhibited a 5-min delay in the rise period during the one-step growth curve. This is the first report demonstrating that E. coli cells with lower m6A-RNA levels have a higher chance of surviving T5 phage infection. IMPORTANCE The importance of RNA modifications has been thoroughly studied in the context of eukaryotic viral infections. However, their role in bacterial hosts during phage infections is largely unexplored. Our research delves into this gap by investigating the effect of host N6-methyladenosine (m6A)-RNA modifications during phage infection. We found that an Escherichia coli mutant depleted of m6A-RNA is less susceptible to T5 infection than the wild type. This finding emphasizes the need to further investigate how RNA modifications affect the fine-tuned regulation of individual bacterial survival in the presence of phages to ensure population survival.
Collapse
Affiliation(s)
- Bibakhya Saikia
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Thomas Carell
- Department for Chemistry, Institute for Chemical Epigenetics (ICE-M), Ludwig-Maximilians-Universität, München, Germany
| | - Sophie Brameyer
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Kirsten Jung
- Faculty of Biology, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| |
Collapse
|
4
|
Saha S, Kanaujia SP. Structural and functional characterization of archaeal DIMT1 unveils distinct protein dynamics essential for efficient catalysis. Structure 2024; 32:1760-1775.e7. [PMID: 39146930 DOI: 10.1016/j.str.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/29/2024] [Accepted: 07/19/2024] [Indexed: 08/17/2024]
Abstract
Dimethyladenosine transferase 1 (DIMT1), an ortholog of bacterial KsgA is a conserved protein that assists in ribosome biogenesis by modifying two successive adenosine bases near the 3' end of small subunit (SSU) rRNA. Although KsgA/DIMT1 proteins have been characterized in bacteria and eukaryotes, they are yet unexplored in archaea. Also, their dynamics are not well understood. Here, we structurally and functionally characterized the apo and holo forms of archaeal DIMT1 from Pyrococcus horikoshii. Wild-type protein and mutants were analyzed to capture different transition states, including open, closed, and intermediate states. This study reports a unique inter-domain movement that is needed for substrate (RNA) positioning in the catalytic pocket, and is only observed in the presence of the cognate cofactors S-adenosyl-L-methionine (SAM) or S-adenosyl-L-homocysteine (SAH). The binding of the inhibitor sinefungine, an analog of SAM or SAH, to archaeal DIMT1 blocks the catalytic pocket and renders the enzyme inactive.
Collapse
Affiliation(s)
- Sayan Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Ero R, Leppik M, Reier K, Liiv A, Remme J. Ribosomal RNA modification enzymes stimulate large ribosome subunit assembly in E. coli. Nucleic Acids Res 2024; 52:6614-6628. [PMID: 38554109 PMCID: PMC11194073 DOI: 10.1093/nar/gkae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Ribosomal RNA modifications are introduced by specific enzymes during ribosome assembly in bacteria. Deletion of individual modification enzymes has a minor effect on bacterial growth, ribosome biogenesis, and translation, which has complicated the definition of the function of the enzymes and their products. We have constructed an Escherichia coli strain lacking 10 genes encoding enzymes that modify 23S rRNA around the peptidyl-transferase center. This strain exhibits severely compromised growth and ribosome assembly, especially at lower temperatures. Re-introduction of the individual modification enzymes allows for the definition of their functions. The results demonstrate that in addition to previously known RlmE, also RlmB, RlmKL, RlmN and RluC facilitate large ribosome subunit assembly. RlmB and RlmKL have functions in ribosome assembly independent of their modification activities. While the assembly stage specificity of rRNA modification enzymes is well established, this study demonstrates that there is a mutual interdependence between the rRNA modification process and large ribosome subunit assembly.
Collapse
MESH Headings
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/genetics
- Methyltransferases/metabolism
- Methyltransferases/genetics
- Ribosome Subunits, Large/metabolism
- Ribosome Subunits, Large/genetics
- Ribosome Subunits, Large, Bacterial/metabolism
- Ribosome Subunits, Large, Bacterial/genetics
- Ribosomes/metabolism
- Ribosomes/genetics
- RNA, Ribosomal/metabolism
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/chemistry
Collapse
Affiliation(s)
- Rya Ero
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Margus Leppik
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Kaspar Reier
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Aivar Liiv
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| | - Jaanus Remme
- IMCB University of Tartu, Riia 23, 51010 Tartu, Estonia
| |
Collapse
|
6
|
Bahena-Ceron R, Teixeira C, Ponce JRJ, Wolff P, Couzon F, François P, Klaholz BP, Vandenesch F, Romby P, Moreau K, Marzi S. RlmQ: a newly discovered rRNA modification enzyme bridging RNA modification and virulence traits in Staphylococcus aureus. RNA (NEW YORK, N.Y.) 2024; 30:200-212. [PMID: 38164596 PMCID: PMC10870370 DOI: 10.1261/rna.079850.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
rRNA modifications play crucial roles in fine-tuning the delicate balance between translation speed and accuracy, yet the underlying mechanisms remain elusive. Comparative analyses of the rRNA modifications in taxonomically distant bacteria could help define their general, as well as species-specific, roles. In this study, we identified a new methyltransferase, RlmQ, in Staphylococcus aureus responsible for the Gram-positive specific m7G2601, which is not modified in Escherichia coli (G2574). We also demonstrate the absence of methylation on C1989, equivalent to E. coli C1962, which is methylated at position 5 by the Gram-negative specific RlmI methyltransferase, a paralog of RlmQ. Both modifications (S. aureus m7G2601 and E. coli m5C1962) are situated within the same tRNA accommodation corridor, hinting at a potential shared function in translation. Inactivation of S. aureus rlmQ causes the loss of methylation at G2601 and significantly impacts growth, cytotoxicity, and biofilm formation. These findings unravel the intricate connections between rRNA modifications, translation, and virulence in pathogenic Gram-positive bacteria.
Collapse
Affiliation(s)
- Roberto Bahena-Ceron
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Chloé Teixeira
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Jose R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Philippe Wolff
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Florence Couzon
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Pauline François
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC, 67400 Illkirch, France
- CNRS UMR 7104, 67400 Illkirch, France
- Inserm U964, 67400 Illkirch, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
- Institut des agents infectieux, Hospices Civils de Lyon, 69004 Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, 69317 Lyon, France
| | - Pascale Romby
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| | - Karen Moreau
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, 69007 Lyon, France
| | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, 67000 Strasbourg, France
| |
Collapse
|
7
|
Wolff P, Labar G, Lechner A, Van Elder D, Soin R, Gueydan C, Kruys V, Droogmans L, Roovers M. The Bacillus subtilis ywbD gene encodes RlmQ, the 23S rRNA methyltransferase forming m 7G2574 in the A-site of the peptidyl transferase center. RNA (NEW YORK, N.Y.) 2024; 30:105-112. [PMID: 38071475 PMCID: PMC10798245 DOI: 10.1261/rna.079853.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
Abstract
Ribosomal RNA contains many posttranscriptionally modified nucleosides, particularly in the functional parts of the ribosome. The distribution of these modifications varies from one organism to another. In Bacillus subtilis, the model organism for Gram-positive bacteria, mass spectrometry experiments revealed the presence of 7-methylguanosine (m7G) at position 2574 of the 23S rRNA, which lies in the A-site of the peptidyl transferase center of the large ribosomal subunit. Testing several m7G methyltransferase candidates allowed us to identify the RlmQ enzyme, encoded by the ywbD open reading frame, as the MTase responsible for this modification. The enzyme methylates free RNA and not ribosomal 50S or 70S particles, suggesting that modification occurs in the early steps of ribosome biogenesis.
Collapse
Affiliation(s)
- Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | | | - Antony Lechner
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Dany Van Elder
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | | |
Collapse
|
8
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
9
|
Bao L, Liljeruhm J, Crespo Blanco R, Brandis G, Remme J, Forster AC. Translational impacts of enzymes that modify ribosomal RNA around the peptidyl transferase centre. RNA Biol 2024; 21:31-41. [PMID: 38952121 PMCID: PMC11221467 DOI: 10.1080/15476286.2024.2368305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 07/03/2024] Open
Abstract
Large ribosomal RNAs (rRNAs) are modified heavily post-transcriptionally in functionally important regions but, paradoxically, individual knockouts (KOs) of the modification enzymes have minimal impact on Escherichia coli growth. Furthermore, we recently constructed a strain with combined KOs of five modification enzymes (RluC, RlmKL, RlmN, RlmM and RluE) of the 'critical region' of the peptidyl transferase centre (PTC) in 23S rRNA that exhibited only a minor growth defect at 37°C (although major at 20°C). However, our combined KO of modification enzymes RluC and RlmE (not RluE) resulted in conditional lethality (at 20°C). Although the growth rates for both multiple-KO strains were characterized, the molecular explanations for such deficits remain unclear. Here, we pinpoint biochemical defects in these strains. In vitro fast kinetics at 20°C and 37°C with ribosomes purified from both strains revealed, counterintuitively, the slowing of translocation, not peptide bond formation or peptidyl release. Elongation rates of protein synthesis in vivo, as judged by the kinetics of β-galactosidase induction, were also slowed. For the five-KO strain, the biggest deficit at 37°C was in 70S ribosome assembly, as judged by a dominant 50S peak in ribosome sucrose gradient profiles at 5 mM Mg2+. Reconstitution of this 50S subunit from purified five-KO rRNA and ribosomal proteins supported a direct role in ribosome biogenesis of the PTC region modifications per se, rather than of the modification enzymes. These results clarify the importance and roles of the enigmatic rRNA modifications.
Collapse
Affiliation(s)
- Letian Bao
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Rubén Crespo Blanco
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Gerrit Brandis
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jaanus Remme
- Department of Molecular Biology, University of Tartu, Tartu, Estonia
| | - Anthony C. Forster
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Sun J, Kinman LF, Jahagirdar D, Ortega J, Davis JH. KsgA facilitates ribosomal small subunit maturation by proofreading a key structural lesion. Nat Struct Mol Biol 2023; 30:1468-1480. [PMID: 37653244 PMCID: PMC10710901 DOI: 10.1038/s41594-023-01078-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/25/2023] [Indexed: 09/02/2023]
Abstract
Ribosome assembly is orchestrated by many assembly factors, including ribosomal RNA methyltransferases, whose precise role is poorly understood. Here, we leverage the power of cryo-EM and machine learning to discover that the E. coli methyltransferase KsgA performs a 'proofreading' function in the assembly of the small ribosomal subunit by recognizing and partially disassembling particles that have matured but are not competent for translation. We propose that this activity allows inactive particles an opportunity to reassemble into an active state, thereby increasing overall assembly fidelity. Detailed structural quantifications in our datasets additionally enabled the expansion of the Nomura assembly map to highlight rRNA helix and r-protein interdependencies, detailing how the binding and docking of these elements are tightly coupled. These results have wide-ranging implications for our understanding of the quality-control mechanisms governing ribosome biogenesis and showcase the power of heterogeneity analysis in cryo-EM to unveil functionally relevant information in biological systems.
Collapse
Affiliation(s)
- Jingyu Sun
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Laurel F Kinman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.
- Centre for Structural Biology, McGill University, Montreal, Quebec, Canada.
| | - Joseph H Davis
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
11
|
D’Aquila P, De Rango F, Paparazzo E, Passarino G, Bellizzi D. Epigenetic-Based Regulation of Transcriptome in Escherichia coli Adaptive Antibiotic Resistance. Microbiol Spectr 2023; 11:e0458322. [PMID: 37184386 PMCID: PMC10269836 DOI: 10.1128/spectrum.04583-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/24/2023] [Indexed: 05/16/2023] Open
Abstract
Adaptive antibiotic resistance is a transient metabolic adaptation of bacteria limiting their sensitivity to low, progressively increased, concentrations of antibiotics. Unlike innate and acquired resistance, adaptive resistance is dependent on the presence of antibiotics, and it disappears when the triggering factor is removed. Low concentrations of antibiotics are largely diffused in natural environments, in the food industry or in certain body compartments of humans when used therapeutically, or in animals when used for growth promotion. However, molecular mechanisms underlying this phenomenon are still poorly characterized. Here, we present experiments suggesting that epigenetic modifications, triggered by low concentrations of ampicillin, gentamicin, and ciprofloxacin, may modulate the sensitivity of bacteria to antibiotics. The epigenetic modifications we observed were paralleled by modifications of the expression pattern of many genes, including some of those that have been found mutated in strains with permanent antibiotic resistance. As the use of low concentrations of antibiotics is spreading in different contexts, our findings may suggest new targets and strategies to avoid adaptive antibiotic resistance. This might be very important as, in the long run, this transient adaptation may increase the chance, allowing the survival and the flourishing of bacteria populations, of the onset of mutations leading to stable resistance. IMPORTANCE In this study, we characterized the modifications of epigenetic marks and of the whole transcriptome in the adaptive response of Escherichia coli cells to low concentrations of ampicillin, gentamicin, and ciprofloxacin. As the transient adaptation does increase the chance of permanent resistance, possibly allowing the survival and flourishing of bacteria populations where casual mutations providing resistance may give an immediate advantage, the importance of this study is not only in the identification of possible molecular mechanisms underlying adaptive resistance to antibiotics, but also in suggesting new strategies to avoid adaptation.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Francesco De Rango
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
12
|
Zeng X, Cao Y, Wang L, Wang M, Wang Q, Yang Q. Viability and transcriptional responses of multidrug resistant E. coli to chromium stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121346. [PMID: 36868548 DOI: 10.1016/j.envpol.2023.121346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/03/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The viability of multidrug resistant (MDR) bacteria in environment is critical for the spread of antimicrobial resistance. In this study, two Escherichia coli strains, MDR LM13 and susceptible ATCC25922, were used to elucidate differences in their viability and transcriptional responses to hexavalent chromium (Cr(VI)) stress. The results show that the viability of LM13 was notably higher than that of ATCC25922 under 2-20 mg/L Cr(VI) exposure with bacteriostatic rates of 3.1%-57%, respectively, for LM13 and 0.9%-93.1%, respectively, for ATCC25922. The levels of reactive oxygen species and superoxide dismutase in ATCC25922 were much higher than those in LM13 under Cr(VI) exposure. Additionally, 514 and 765 differentially expressed genes were identified from the transcriptomes of the two strains (log2|FC| > 1, p < 0.05). Among them, 134 up-regulated genes were enriched in LM13 in response to external pressure, but only 48 genes were annotated in ATCC25922. Furthermore, the expression levels of antibiotic resistance genes, insertion sequences, DNA and RNA methyltransferases, and toxin-antitoxin systems were generally higher in LM13 than in ATCC25922. This work shows that MDR LM13 has a stronger viability under Cr(VI) stress, and therefore may promote the dissemination of MDR bacteria in environment.
Collapse
Affiliation(s)
- Xiangpeng Zeng
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yu Cao
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Lanning Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Min Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qiang Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China
| | - Qingxiang Yang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
13
|
Ke N, Kumka JE, Fang M, Weaver B, Burstyn JN, Bauer CE. Redox Brake Regulator RedB and FnrL Function as Yin-Yang Regulators of Anaerobic-Aerobic Metabolism in Rhodobacter capsulatus. Microbiol Spectr 2022; 10:e0235422. [PMID: 36106752 PMCID: PMC9603517 DOI: 10.1128/spectrum.02354-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 01/04/2023] Open
Abstract
We recently described a new member of the CRP (cyclic AMP receptor protein)/FNR (fumarate and nitrate reductase regulatory protein) family called RedB, an acronym for redox brake, that functions to limit the production of ATP and NADH. This study shows that the RedB regulon significantly overlaps the FnrL regulon, with 199 genes being either directly or indirectly regulated by both of these global regulatory proteins. Among these 199 coregulated genes, 192 are divergently regulated, indicating that RedB functions as an antagonist of FnrL. Chromatin immunoprecipitation sequencing (ChIP-seq) analysis indicates that RedB and Fnr directly coregulate only 4 out of 199 genes. The primary mechanism for the divergent regulation of target genes thus involves indirect regulation by both RedB and FnrL (156 cases). Additional regulation involves direct binding by RedB and indirect regulation by FnrL (36 cases) or direct binding by FnrL and indirect regulation by RedB (3 cases). Analysis of physiological pathways under direct and indirect control by these global regulators demonstrates that RedB functions primarily to limit energy production, while FnrL functions to enhance energy production. This regulation includes glycolysis, gluconeogenesis, photosynthesis, hydrogen oxidation, electron transport, carbon fixation, lipid biosynthesis, and protein synthesis. Finally, we show that 75% of genomes from diverse species that code for RedB proteins also harbor genes coding for FNR homologs. This cooccurrence indicates that RedB likely has an important role in buffering FNR-mediated energy production in a broad range of species. IMPORTANCE The CRP/FNR family of regulatory proteins constitutes a large collection of related transcription factors, several of which globally regulate cellular energy production. A well-characterized example is FNR (called FnrL in Rhodobacter capsulatus), which is responsible for regulating the expression of numerous genes that promote maximal energy production and growth under anaerobic conditions. In a companion article (N. Ke, J. E. Kumka, M. Fang, B. Weaver, et al., Microbiol Spectr 10:e02353-22, 2022, https://doi.org/10.1128/Spectrum02353-22), we identified a new subgroup of the CRP/FNR family and demonstrated that a member of this new subgroup, called RedB, has a role in limiting cellular energy production. In this study, we show that numerous genes encompassing the RedB regulon significantly overlap genes that are members of the FnrL regulon. Furthermore, 97% of the genes that are members of both the RedB and FnrL regulons are divergently regulated by these two transcription factors. RedB thus functions as a buffer limiting the amount of energy production that is promoted by FnrL.
Collapse
Affiliation(s)
- Nijia Ke
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Joseph E. Kumka
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Mingxu Fang
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Brian Weaver
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Carl E. Bauer
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
14
|
Roovers M, Labar G, Wolff P, Feller A, Van Elder D, Soin R, Gueydan C, Kruys V, Droogmans L. The Bacillus subtilis open reading frame ysgA encodes the SPOUT methyltransferase RlmP forming 2'- O-methylguanosine at position 2553 in the A-loop of 23S rRNA. RNA (NEW YORK, N.Y.) 2022; 28:1185-1196. [PMID: 35710145 PMCID: PMC9380741 DOI: 10.1261/rna.079131.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
A previous bioinformatic analysis predicted that the ysgA open reading frame of Bacillus subtilis encodes an RNA methyltransferase of the SPOUT superfamily. Here we show that YsgA is the 2'-O-methyltransferase that targets position G2553 (Escherichia coli numbering) of the A-loop of 23S rRNA. This was shown by a combination of biochemical and mass spectrometry approaches using both rRNA extracted from B. subtilis wild-type or ΔysgA cells and in vitro synthesized rRNA. When the target G2553 is mutated, YsgA is able to methylate the ribose of adenosine. However, it cannot methylate cytidine nor uridine. The enzyme modifies free 23S rRNA but not the fully assembled ribosome nor the 50S subunit, suggesting that the modification occurs early during ribosome biogenesis. Nevertheless, ribosome subunits assembly is unaffected in a B. subtilis ΔysgA mutant strain. The crystal structure of the recombinant YsgA protein, combined with mutagenesis data, outlined in this article highlights a typical SPOUT fold preceded by an L7Ae/L30 (eL8/eL30 in a new nomenclature) amino-terminal domain.
Collapse
Affiliation(s)
| | | | - Philippe Wolff
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, F-67084, Strasbourg, France
| | - André Feller
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | - Dany Van Elder
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles (ULB), B-6041 Gosselies, Belgium
| | - Louis Droogmans
- Laboratoire de Chimie Biologique, Université Libre de Bruxelles (ULB), Labiris, B-1070 Bruxelles, Belgium
| |
Collapse
|
15
|
Liljeruhm J, Leppik M, Bao L, Truu T, Calvo-Noriega M, Freyer NS, Liiv A, Wang J, Blanco RC, Ero R, Remme J, Forster AC. Plasticity and conditional essentiality of modification enzymes for domain V of Escherichia coli 23S ribosomal RNA. RNA (NEW YORK, N.Y.) 2022; 28:796-807. [PMID: 35260421 PMCID: PMC9074899 DOI: 10.1261/rna.079096.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/18/2022] [Indexed: 06/03/2023]
Abstract
Escherichia coli rRNAs are post-transcriptionally modified at 36 positions but their modification enzymes are dispensable individually for growth, bringing into question their significance. However, a major growth defect was reported for deletion of the RlmE enzyme, which abolished a 2'O methylation near the peptidyl transferase center (PTC) of the 23S rRNA. Additionally, an adjacent 80-nt "critical region" around the PTC had to be modified to yield significant peptidyl transferase activity in vitro. Surprisingly, we discovered that an absence of just two rRNA modification enzymes is conditionally lethal (at 20°C): RlmE and RluC. At a permissive temperature (37°C), this double knockout was shown to abolish four modifications and be defective in ribosome assembly, though not more so than the RlmE single knockout. However, the double knockout exhibited an even lower rate of tripeptide synthesis than did the single knockout, suggesting an even more defective ribosomal translocation. A combination knockout of the five critical-region-modifying enzymes RluC, RlmKL, RlmN, RlmM, and RluE (not RlmE), which synthesize five of the seven critical-region modifications and 14 rRNA and tRNA modifications altogether, was viable (minor growth defect at 37°C, major at 20°C). This was surprising based on prior in vitro studies. This five-knockout combination had minimal effects on ribosome assembly and frameshifting at 37°C, but greater effects on ribosome assembly and in vitro peptidyl transferase activity at cooler temperatures. These results establish the conditional essentiality of bacterial rRNA modification enzymes and also reveal unexpected plasticity of modification of the PTC region in vivo.
Collapse
Affiliation(s)
- Josefine Liljeruhm
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Margus Leppik
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Letian Bao
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Triin Truu
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Maria Calvo-Noriega
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Nicola S Freyer
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Aivar Liiv
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Jinfan Wang
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Rubén Crespo Blanco
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Rya Ero
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Jaanus Remme
- Department of Molecular Biology, University of Tartu, 51010 Tartu, Estonia
| | - Anthony C Forster
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| |
Collapse
|
16
|
Mitochondrial rRNA Methylation by Mettl15 Contributes to the Exercise and Learning Capability in Mice. Int J Mol Sci 2022; 23:ijms23116056. [PMID: 35682734 PMCID: PMC9181494 DOI: 10.3390/ijms23116056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Mitochondrial translation is a unique relic of the symbiotic origin of the organelle. Alterations of its components cause a number of severe human diseases. Hereby we report a study of mice devoid of Mettl15 mitochondrial 12S rRNA methyltransferase, responsible for the formation of m4C839 residue (human numbering). Homozygous Mettl15−/− mice appeared to be viable in contrast to other mitochondrial rRNA methyltransferase knockouts reported earlier. The phenotype of Mettl15−/− mice is much milder than that of other mutants of mitochondrial translation apparatus. In agreement with the results obtained earlier for cell cultures with an inactivated Mettl15 gene, we observed accumulation of the RbfA factor, normally associated with the precursor of the 28S subunit, in the 55S mitochondrial ribosome fraction of knockout mice. A lack of Mettl15 leads to a lower blood glucose level after physical exercise relative to that of the wild-type mice. Mettl15−/− mice demonstrated suboptimal muscle performance and lower levels of Cox3 protein synthesized by mitoribosomes in the oxidative soleus muscles. Additionally, we detected decreased learning capabilities in the Mettl15−/− knockout mice in the tests with both positive and negative reinforcement. Such properties make Mettl15−/− knockout mice a suitable model for mild mitochondriopathies.
Collapse
|
17
|
Babu VMP, Sankari S, Ghosal A, Walker GC. A Mutant Era GTPase Suppresses Phenotypes Caused by Loss of Highly Conserved YbeY Protein in Escherichia coli. Front Microbiol 2022; 13:896075. [PMID: 35663862 PMCID: PMC9159920 DOI: 10.3389/fmicb.2022.896075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Ribosome assembly is a complex fundamental cellular process that involves assembling multiple ribosomal proteins and several ribosomal RNA species in a highly coordinated yet flexible and resilient manner. The highly conserved YbeY protein is a single-strand specific endoribonuclease, important for ribosome assembly, 16S rRNA processing, and ribosome quality control. In Escherichia coli, ybeY deletion results in pleiotropic phenotypes including slow growth, temperature sensitivity, accumulation of precursors of 16S rRNA, and impaired formation of fully assembled 70S subunits. Era, an essential highly conserved GTPase protein, interacts with many ribosomal proteins, and its depletion results in ribosome assembly defects. YbeY has been shown to interact with Era together with ribosomal protein S11. In this study, we have analyzed a suppressor mutation, era(T99I), that can partially suppress a subset of the multiple phenotypes of ybeY deletion. The era(T99I) allele was able to improve 16S rRNA processing and ribosome assembly at 37°C. However, it failed to suppress the temperature sensitivity and did not improve 16S rRNA stability. The era(T99I) allele was also unable to improve the 16S rRNA processing defects caused by the loss of ribosome maturation factors. We also show that era(T99I) increases the GroEL levels in the 30S ribosome fractions independent of YbeY. We propose that the mechanism of suppression is that the changes in Era's structure caused by the era(T99I) mutation affect its GTP/GDP cycle in a way that increases the half-life of RNA binding to Era, thereby facilitating alternative processing of the 16S RNA precursor. Taken together, this study offers insights into the role of Era and YbeY in ribosome assembly and 16S rRNA processing events.
Collapse
Affiliation(s)
| | | | | | - Graham C. Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
18
|
Singh J, Raina R, Vinothkumar KR, Anand R. Decoding the Mechanism of Specific RNA Targeting by Ribosomal Methyltransferases. ACS Chem Biol 2022; 17:829-839. [PMID: 35316014 DOI: 10.1021/acschembio.1c00732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methylation of specific nucleotides is integral for ribosomal biogenesis and also serves as a common mechanism to confer antibiotic resistance by pathogenic bacteria. Here, by determining the high-resolution structure of the 30S-KsgA complex by cryo-electron microscopy, a state was captured, where KsgA juxtaposes between helices h44 and h45 of the 30S ribosome, separating them, thereby enabling remodeling of the surrounded rRNA and allowing the cognate site to enter the methylation pocket. With the structure as a guide, several mutant versions of the ribosomes, where interacting bases in the catalytic helix h45 and surrounding helices h44, h24, and h27, were mutated and evaluated for their methylation efficiency revealing factors that direct the enzyme to its cognate site with high fidelity. The biochemical studies show that the three-dimensional environment of the ribosome enables the interaction of select loop regions in KsgA with the ribosome helices paramount to maintain selectivity.
Collapse
Affiliation(s)
- Juhi Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Rahul Raina
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Kutti R. Vinothkumar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
- DBT-Wellcome Trust India Alliance Senior Fellow, Mumbai400076, India
| |
Collapse
|
19
|
Ribosomal protein S18 acetyltransferase RimI is responsible for the acetylation of elongation factor Tu. J Biol Chem 2022; 298:101914. [PMID: 35398352 PMCID: PMC9079301 DOI: 10.1016/j.jbc.2022.101914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
N-terminal acetylation is widespread in the eukaryotic proteome but in bacteria is restricted to a small number of proteins mainly involved in translation. It was long known that elongation factor Tu (EF-Tu) is N-terminally acetylated, whereas the enzyme responsible for this process was unclear. Here, we report that RimI acetyltransferase, known to modify ribosomal protein S18, is likewise responsible for N-acetylation of the EF-Tu. With the help of inducible tufA expression plasmid, we demonstrated that the acetylation does not alter the stability of EF-Tu. Binding of aminoacyl tRNA to the recombinant EF-Tu in vitro was found to be unaffected by the acetylation. At the same time, with the help of fast kinetics methods, we demonstrate that an acetylated variant of EF-Tu more efficiently accelerates A-site occupation by aminoacyl-tRNA, thus increasing the efficiency of in vitro translation. Finally, we show that a strain devoid of RimI has a reduced growth rate, expanded to an evolutionary timescale, and might potentially promote conservation of the acetylation mechanism of S18 and EF-Tu. This study increased our understanding of the modification of bacterial translation apparatus.
Collapse
|
20
|
Ren Y, Chakraborty T, Doijad S, Falgenhauer L, Falgenhauer J, Goesmann A, Hauschild AC, Schwengers O, Heider D. Prediction of antimicrobial resistance based on whole-genome sequencing and machine learning. Bioinformatics 2021; 38:325-334. [PMID: 34613360 PMCID: PMC8722762 DOI: 10.1093/bioinformatics/btab681] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/27/2021] [Accepted: 09/24/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Antimicrobial resistance (AMR) is one of the biggest global problems threatening human and animal health. Rapid and accurate AMR diagnostic methods are thus very urgently needed. However, traditional antimicrobial susceptibility testing (AST) is time-consuming, low throughput and viable only for cultivable bacteria. Machine learning methods may pave the way for automated AMR prediction based on genomic data of the bacteria. However, comparing different machine learning methods for the prediction of AMR based on different encodings and whole-genome sequencing data without previously known knowledge remains to be done. RESULTS In this study, we evaluated logistic regression (LR), support vector machine (SVM), random forest (RF) and convolutional neural network (CNN) for the prediction of AMR for the antibiotics ciprofloxacin, cefotaxime, ceftazidime and gentamicin. We could demonstrate that these models can effectively predict AMR with label encoding, one-hot encoding and frequency matrix chaos game representation (FCGR encoding) on whole-genome sequencing data. We trained these models on a large AMR dataset and evaluated them on an independent public dataset. Generally, RFs and CNNs perform better than LR and SVM with AUCs up to 0.96. Furthermore, we were able to identify mutations that are associated with AMR for each antibiotic. AVAILABILITY AND IMPLEMENTATION Source code in data preparation and model training are provided at GitHub website (https://github.com/YunxiaoRen/ML-iAMR). SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yunxiao Ren
- Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg 35032, Germany
| | - Trinad Chakraborty
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen 35392, Germany,German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany
| | - Swapnil Doijad
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen 35392, Germany,German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany
| | - Linda Falgenhauer
- German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany,Institute of Hygiene and Environmental Medicine, Justus Liebig University Giessen, Giessen 35392, Germany,Hessisches universitäres Kompetenzzentrum Krankenhaushygiene, Giessen 35392, Germany
| | - Jane Falgenhauer
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen 35392, Germany,German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany
| | - Alexander Goesmann
- German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany,Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Anne-Christin Hauschild
- Department of Data Science in Biomedicine, Faculty of Mathematics and Computer Science, Philipps-University of Marburg, Marburg 35032, Germany
| | - Oliver Schwengers
- German Center for Infection Research, Partner site Giessen-Marburg-Langen, Giessen 35392, Germany,Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | | |
Collapse
|
21
|
Antoine L, Bahena-Ceron R, Devi Bunwaree H, Gobry M, Loegler V, Romby P, Marzi S. RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes (Basel) 2021; 12:1125. [PMID: 34440299 PMCID: PMC8394870 DOI: 10.3390/genes12081125] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
RNA modifications are involved in numerous biological processes and are present in all RNA classes. These modifications can be constitutive or modulated in response to adaptive processes. RNA modifications play multiple functions since they can impact RNA base-pairings, recognition by proteins, decoding, as well as RNA structure and stability. However, their roles in stress, environmental adaptation and during infections caused by pathogenic bacteria have just started to be appreciated. With the development of modern technologies in mass spectrometry and deep sequencing, recent examples of modifications regulating host-pathogen interactions have been demonstrated. They show how RNA modifications can regulate immune responses, antibiotic resistance, expression of virulence genes, and bacterial persistence. Here, we illustrate some of these findings, and highlight the strategies used to characterize RNA modifications, and their potential for new therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stefano Marzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR 9002, F-67000 Strasbourg, France; (L.A.); (R.B.-C.); (H.D.B.); (M.G.); (V.L.); (P.R.)
| |
Collapse
|
22
|
Osterman IA, Dontsova OA, Sergiev PV. rRNA Methylation and Antibiotic Resistance. BIOCHEMISTRY (MOSCOW) 2021; 85:1335-1349. [PMID: 33280577 DOI: 10.1134/s000629792011005x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Methylation of nucleotides in rRNA is one of the basic mechanisms of bacterial resistance to protein synthesis inhibitors. The genes for corresponding methyltransferases have been found in producer strains and clinical isolates of pathogenic bacteria. In some cases, rRNA methylation by housekeeping enzymes is, on the contrary, required for the action of antibiotics. The effects of rRNA modifications associated with antibiotic efficacy may be cooperative or mutually exclusive. Evolutionary relationships between the systems of rRNA modification by housekeeping enzymes and antibiotic resistance-related methyltransferases are of particular interest. In this review, we discuss the above topics in detail.
Collapse
Affiliation(s)
- I A Osterman
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - O A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia.,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - P V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028, Russia. .,Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
23
|
Knüppel R, Trahan C, Kern M, Wagner A, Grünberger F, Hausner W, Quax TEF, Albers SV, Oeffinger M, Ferreira-Cerca S. Insights into synthesis and function of KsgA/Dim1-dependent rRNA modifications in archaea. Nucleic Acids Res 2021; 49:1662-1687. [PMID: 33434266 PMCID: PMC7897474 DOI: 10.1093/nar/gkaa1268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes are intricate molecular machines ensuring proper protein synthesis in every cell. Ribosome biogenesis is a complex process which has been intensively analyzed in bacteria and eukaryotes. In contrast, our understanding of the in vivo archaeal ribosome biogenesis pathway remains less characterized. Here, we have analyzed the in vivo role of the almost universally conserved ribosomal RNA dimethyltransferase KsgA/Dim1 homolog in archaea. Our study reveals that KsgA/Dim1-dependent 16S rRNA dimethylation is dispensable for the cellular growth of phylogenetically distant archaea. However, proteomics and functional analyses suggest that archaeal KsgA/Dim1 and its rRNA modification activity (i) influence the expression of a subset of proteins and (ii) contribute to archaeal cellular fitness and adaptation. In addition, our study reveals an unexpected KsgA/Dim1-dependent variability of rRNA modifications within the archaeal phylum. Combining structure-based functional studies across evolutionary divergent organisms, we provide evidence on how rRNA structure sequence variability (re-)shapes the KsgA/Dim1-dependent rRNA modification status. Finally, our results suggest an uncoupling between the KsgA/Dim1-dependent rRNA modification completion and its release from the nascent small ribosomal subunit. Collectively, our study provides additional understandings into principles of molecular functional adaptation, and further evolutionary and mechanistic insights into an almost universally conserved step of ribosome synthesis.
Collapse
Affiliation(s)
- Robert Knüppel
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Christian Trahan
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Michael Kern
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Alexander Wagner
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Felix Grünberger
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Winfried Hausner
- Chair of Microbiology – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, Microbiology, University of Freiburg, Freiburg, Germany
| | - Marlene Oeffinger
- Institut de Recherches Cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec H3A 1A3, Canada
- Département de Biochimie, Faculté de Médecine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III – Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
24
|
Laptev I, Dontsova O, Sergiev P. Epitranscriptomics of Mammalian Mitochondrial Ribosomal RNA. Cells 2020; 9:E2181. [PMID: 32992603 PMCID: PMC7600485 DOI: 10.3390/cells9102181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Modified nucleotides are present in all ribosomal RNA molecules. Mitochondrial ribosomes are unique to have a set of methylated residues that includes universally conserved ones, those that could be found either in bacterial or in archaeal/eukaryotic cytosolic ribosomes and those that are present exclusively in mitochondria. A single pseudouridine within the mt-rRNA is located in the peptidyltransferase center at a position similar to that in bacteria. After recent completion of the list of enzymes responsible for the modification of mammalian mitochondrial rRNA it became possible to summarize an evolutionary history, functional role of mt-rRNA modification enzymes and an interplay of the mt-rRNA modification and mitoribosome assembly process, which is a goal of this review.
Collapse
Affiliation(s)
- Ivan Laptev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
| | - Olga Dontsova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | - Petr Sergiev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (I.L.); (O.D.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143028 Moscow Region, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119992 Moscow, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
25
|
Golubev A, Fatkhullin B, Khusainov I, Jenner L, Gabdulkhakov A, Validov S, Yusupova G, Yusupov M, Usachev K. Cryo‐EM structure of the ribosome functional complex of the human pathogen
Staphylococcus aureus
at 3.2 Å resolution. FEBS Lett 2020; 594:3551-3567. [DOI: 10.1002/1873-3468.13915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alexander Golubev
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Bulat Fatkhullin
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Institute of Protein Research Russian Academy of Sciences Puschino Russia
| | - Iskander Khusainov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Department of Molecular Sociology Max Planck Institute of Biophysics Frankfurt am Main Germany
| | - Lasse Jenner
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Azat Gabdulkhakov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Institute of Protein Research Russian Academy of Sciences Puschino Russia
| | - Shamil Validov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
| | - Gulnara Yusupova
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Marat Yusupov
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
- Département de Biologie et de Génomique Structurales Institut de Génétique et de Biologie Moléculaire et Cellulaire CNRS UMR7104INSERM U964Université de Strasbourg Illkirch France
| | - Konstantin Usachev
- Laboratory of Structural Biology Institute of Fundamental Medicine and Biology Kazan Federal University Russia
| |
Collapse
|
26
|
Ojha S, Malla S, Lyons SM. snoRNPs: Functions in Ribosome Biogenesis. Biomolecules 2020; 10:biom10050783. [PMID: 32443616 PMCID: PMC7277114 DOI: 10.3390/biom10050783] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/10/2020] [Accepted: 05/13/2020] [Indexed: 01/18/2023] Open
Abstract
Ribosomes are perhaps the most critical macromolecular machine as they are tasked with carrying out protein synthesis in cells. They are incredibly complex structures composed of protein components and heavily chemically modified RNAs. The task of assembling mature ribosomes from their component parts consumes a massive amount of energy and requires greater than 200 assembly factors. Among the most critical of these are small nucleolar ribonucleoproteins (snoRNPs). These are small RNAs complexed with diverse sets of proteins. As suggested by their name, they localize to the nucleolus, the site of ribosome biogenesis. There, they facilitate multiple roles in ribosomes biogenesis, such as pseudouridylation and 2′-O-methylation of ribosomal (r)RNA, guiding pre-rRNA processing, and acting as molecular chaperones. Here, we reviewed their activity in promoting the assembly of ribosomes in eukaryotes with regards to chemical modification and pre-rRNA processing.
Collapse
Affiliation(s)
- Sandeep Ojha
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Sulochan Malla
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02115, USA; (S.O.); (S.M.)
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02115, USA
- Correspondence: ; Tel.: +1-617-358-4280
| |
Collapse
|