1
|
Silva Neto JB, Mota LFM, Londoño-Gil M, Schmidt PI, Rodrigues GRD, Ligori VA, Arikawa LM, Magnabosco CU, Brito LF, Baldi F. Genotype-by-environment interactions in beef and dairy cattle populations: A review of methodologies and perspectives on research and applications. Anim Genet 2024. [PMID: 39377556 DOI: 10.1111/age.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Modern livestock production systems are characterized by a greater focus on intensification, involving managing larger numbers of animals to achieve higher productive efficiency and animal health and welfare within herds. Therefore, animal breeding programs need to be strategically designed to select animals that can effectively enhance production performance and animal welfare across a range of environmental conditions. Thus, this review summarizes the main methodologies used for assessing the levels of genotype-by-environment interaction (G × E) in cattle populations. In addition, we explored the importance of integrating genomic and phenotypic information to quantify and account for G × E in breeding programs. An overview of the structure of cattle breeding programs is provided to give insights into the potential outcomes and challenges faced when considering G × E to optimize genetic gains in breeding programs. The role of nutrigenomics and its impact on gene expression related to metabolism in cattle are also discussed, along with an examination of current research findings and their potential implications for future research and practical applications. Out of the 116 studies examined, 60 and 56 focused on beef and dairy cattle, respectively. A total of 83.62% of these studies reported genetic correlations across environmental gradients below 0.80, indicating the presence of G × E. For beef cattle, 69.33%, 24%, 2.67%, 2.67%, and 1.33% of the studies evaluated growth, reproduction, carcass and meat quality, survival, and feed efficiency traits, respectively. By contrast, G × E research in dairy cattle populations predominantly focused on milk yield and milk composition (79.36% of the studies), followed by reproduction and fertility (19.05%), and survival (1.59%) traits. The importance of G × E becomes particularly evident when considering complex traits such as heat tolerance, disease resistance, reproductive performance, and feed efficiency, as highlighted in this review. Genomic models provide a valuable avenue for studying these traits in greater depth, allowing for the identification of candidate genes and metabolic pathways associated with animal fitness, adaptation, and environmental efficiency. Nutrigenetics and nutrigenomics are emerging fields that require extensive investigation to maximize our understanding of gene-nutrient interactions. By studying various transcription factors, we can potentially improve animal metabolism, improving performance, health, and quality of products such as meat and milk.
Collapse
Affiliation(s)
- João B Silva Neto
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Lucio F M Mota
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Marisol Londoño-Gil
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Patrícia I Schmidt
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | - Gustavo R D Rodrigues
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Brazil
| | - Viviane A Ligori
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
- Beef Cattle Research Center, Institute of Animal Science, Sertãozinho, Brazil
| | - Leonardo M Arikawa
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Fernando Baldi
- Department of Animal Science, School of Agricultural and Veterinarian Sciences (FCAV), São Paulo State University (UNESP), Jaboticabal, Brazil
| |
Collapse
|
2
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Mbhele Z, Zharare GE, Zimudzi C, Ntuli NR. Assessing Genetic Variation among Strychnos spinosa Lam. Morphotypes Using Simple Sequence Repeat Markers. PLANTS (BASEL, SWITZERLAND) 2023; 12:2810. [PMID: 37570964 PMCID: PMC10421500 DOI: 10.3390/plants12152810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Strychnos spinosa Lam., commonly known as green monkey orange, is a highly valued indigenous fruit tree in South Africa with potential for domestication and commercialization. However, no study has reported on the molecular diversity of Strychnos spinosa morphotypes. Therefore, this study aimed to determine genetic variation among 32 Strychnos spinosa morphotypes using simple sequence repeat (SSR) markers. Fourteen amplified SSR markers produced 159 alleles, with a mean of 5.68 per locus. The polymorphic information content (PIC) values ranged from 0.22 (Ssp_1) to 0.84 (Ssp_6). Morphotypes were clustered in a biplot based on their genetic distances. The dendrogram chiefly discriminated morphotypes according to variation of pericarp texture. The population structure had the highest delta value K = 3, thus the 32 morphotypes were divided into three subpopulations based on the Bayesian approach. The affinities produced by the population structure agreed with the genetic distance of closely related morphotypes. This study is the first to report on SSR marker development and their successful use for genetic diversity and population structure studies of Strychnos spinosa. It provides insights into the molecular characterisation of Strychnos spinosa. This can lead to breeding programs and crop improvement programs, particularly in varietal developmental programs, which can contribute to alleviating food security challenges.
Collapse
Affiliation(s)
- Zoliswa Mbhele
- Department of Botany, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| | | | - Clemence Zimudzi
- Department of Biological Sciences and Ecology, Faculty of Science, University of Zimbabwe, Harare P.O. Box MP167, Zimbabwe;
| | - Nontuthuko Rosemary Ntuli
- Department of Botany, Faculty of Science, Agriculture and Engineering, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
4
|
Obšteter J, Jenko J, Pocrnic I, Gorjanc G. Investigating the benefits and perils of importing genetic material in small cattle breeding programs via simulation. J Dairy Sci 2023; 106:S0022-0302(23)00385-5. [PMID: 37474361 DOI: 10.3168/jds.2022-23132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/28/2023] [Indexed: 07/22/2023]
Abstract
Small breeding programs are limited in achieving competitive genetic gain and prone to high rates of inbreeding. Thus, they often import genetic material to increase genetic gain and to limit the loss of genetic variability. However, the benefit of import depends on the strength of genotype-by-environment interaction. Import also diminishes the relevance of domestic selection and the use of domestic breeding animals. Introduction of genomic selection has potentially exacerbated this issue, but is also opening the potential for smaller breeding programs. The aim of this paper was to determine when and to what extent small breeding programs benefit from importing genetic material by quantifying the genetic gain as well as the sources of genetic gain. We simulated 2 cattle breeding programs of the same breed that represented a large foreign and a small domestic breeding program. The programs differed in selection parameters of sire selection, and in the initial genetic mean and annual genetic gain. We evaluated a control scenario without the use of foreign sires in the domestic breeding program and 24 scenarios that varied the percentage of domestic dams mated with foreign sires, the genetic correlation between the breeding programs (0.8 or 0.9), and the time of implementing genomic selection in the domestic compared with the foreign breeding program (concurrently or with a 10-yr delay). We compared the scenarios based on the genetic gain and genic standard deviation. Finally, we partitioned breeding values and genetic trends of the scenarios to quantify the contribution of domestic selection and import to the domestic genetic gain. The simulation revealed that when both breeding programs implemented genomic selection simultaneously, the use of foreign sires increased domestic genetic gain only when genetic correlation was 0.9 (10%-18% increase). In contrast, when the domestic breeding program implemented genomic selection with a 10-yr delay, import increased genetic gain at both tested correlations, 0.8 (5%-23% increase) and 0.9 (15%-53% increase). The increase was significant when we mated at least 10% or 25% domestic females with foreign sires and increased with the increasing use of foreign sires, but with a diminishing return. The partitioning analysis revealed that the contribution of import expectedly increased with the increased use of foreign sires. However, the increase did not depend on the genetic correlation and was not proportional to the increase in domestic genetic gain. This represents a peril for small breeding programs because they could be overly relying on import with diminishing returns for the genetic gain, marginal benefit for the genetic variability, and large loss of the domestic germplasm. The benefit and peril of import depends on an interplay of genetic correlation, extent of using foreign sires, and a breeding scheme. It is therefore crucial that small breeding programs assess the possible benefits of import beyond domestic selection. The benefit of import should be weighed against the perils of decreased use of domestic sires and decreased contribution and value of domestic selection.
Collapse
Affiliation(s)
- J Obšteter
- Department of Animal Science, Agricultural Institute of Slovenia, 1000, Ljubljana, Slovenia.
| | - J Jenko
- Geno Breeding and A.I. Association, N-2317, Hamar, Norway
| | - I Pocrnic
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, Edinburgh, United Kingdom
| | - G Gorjanc
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, EH25 9RG, Edinburgh, United Kingdom; Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
5
|
Bengtsson C, Thomasen JR, Kargo M, Bouquet A, Slagboom M. Emphasis on resilience in dairy cattle breeding: Possibilities and consequences. J Dairy Sci 2022; 105:7588-7599. [PMID: 35863926 DOI: 10.3168/jds.2021-21049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 04/20/2022] [Indexed: 11/19/2022]
Abstract
This study aimed to investigate dairy cattle breeding goals with more emphasis on resilience. We simulated the consequences of increasing weight on resilience indicators and an assumed true resilience trait (TR). Two environments with different breeding goals were simulated to represent the variability of production systems across Europe. Ten different scenarios were stochastically simulated in a so-called pseudogenomic simulation approach. We showed that many modern dairy cattle breeding goals most likely have negative genetic gain for TR and promising resilience indicators such as the log-transformed, daily deviation from the lactation curve (LnVAR). In addition, there were many ways of improving TR by increasing the breeding goal weight of different resilience indicators. The results showed that adding breeding goal weight to resilience indicators, such as body condition score and LnVAR, could reverse the negative trend observed for resilience indicators. Loss in the aggregate genotype calculated with only current breeding goal traits was 12 to 76%. This loss was mainly due to a reduction in genetic gain in milk production. We observed higher genetic gain in beef production, fertility, and udder health when breeding for more resilience, but from an economical point of view, this was not high enough to compensate for the reduction in genetic gain in milk production. The highest genetic gain in TR was obtained when adding the highest breeding goal weight to LnVAR or TR, both with 0.29 genetic standard deviation units. The indicators we used, body condition score and LnVAR, can be measured on a large scale today with relatively cheap methods, which is crucial if we want to improve these traits through breeding. Economic values for resilience have to be estimated to find the most optimal breeding goal for a more resilient dairy cow in the future.
Collapse
Affiliation(s)
| | | | - M Kargo
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - A Bouquet
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | - M Slagboom
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|
6
|
Schmidtmann C, Slagboom M, Sørensen AC, Hinrichs D, Thaller G, Kargo M. Short‐ and long‐term consequences of collaboration between Northern European Red dairy and dual‐purpose cattle. J Anim Breed Genet 2022; 139:447-461. [DOI: 10.1111/jbg.12672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 11/19/2021] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Christin Schmidtmann
- Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Kiel Germany
| | - Margot Slagboom
- Department of Molecular Biology and Genetics Center for Quantitative Genetics and Genomics Aarhus University Tjele Denmark
| | | | - Dirk Hinrichs
- Department of Animal Breeding University of Kassel Witzenhausen Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Kiel Germany
| | - Morten Kargo
- Department of Molecular Biology and Genetics Center for Quantitative Genetics and Genomics Aarhus University Tjele Denmark
| |
Collapse
|
7
|
Cao L, Mulder HA, Liu H, Nielsen HM, S Rensen AC. Competitive gene flow does not necessarily maximize the genetic gain of genomic breeding programs in the presence of genotype-by-environment interaction. J Dairy Sci 2021; 104:8122-8134. [PMID: 33934864 DOI: 10.3168/jds.2020-19823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/15/2021] [Indexed: 11/19/2022]
Abstract
National and international across-population selection is often recommended and fairly common in the current breeding practice of dairy cattle, with the primary aims to increase genetic gain and genetic variability. The aim of this study was to test the hypothesis that the strategy of truncation selection of sires across populations [i.e., competitive gene flow strategy (CGF)] may not necessarily maximize genetic gain in the long term in the presence of genotype-by-environment interaction (G×E). Two alternative strategies used to be compared with CGF were forced gene flow (FGF) strategies, with 10 or 50% of domestic dams forced to be mated with foreign sires (FGF10%, FGF50%). Two equal-size populations (Ndams = 1,000) that were selected for the same breeding goal trait (h2 = 0.3) under G×E correlation (rg) of either 0.9 or 0.8 were simulated to test these 3 different strategies. Each population first experienced either 5 or 20 differentiation generations (Gd), then 15 migration generations. Discrete generations were simulated for simplicity. Each population performed a within-population conventional breeding program during differentiation generations and the 3 across-population sire selection strategies based on joint genomic prediction during migration generations. The 4 Gd_rg combinations defined 4 different levels of differentiation degree between the 2 populations at the start of migration. The true rate of inbreeding over the last 10 migration generations in each scenario was constrained at 0.01 to provide a fair basis for comparison of genetic gain across scenarios. Results showed that CGF maximized the genetic gain after 15 migration generations in 5_0.9 combination only, the case of the lowest differentiation degree, with a superiority of 0.4% (0.04 genetic SD units) over the suboptimal strategy. While in 5_0.8, 20_0.9, and 20_0.8 combinations, 2 FGF strategies had a superiority in genetic gain of 2.3 to 12.5% (0.21-1.07 genetic SD units) over CGF after 15 migration generations, especially FGF50%. The superiority of FGF strategies over CGF was that they alleviated inbreeding, introduced new genetic variance in the early migration period, and improved accuracy in the entire migration period. Therefore, we concluded that CGF does not necessarily maximize the genetic gain of across-population genomic breeding programs given moderate G×E. The across-population selection strategy remains to be optimized to maximize genetic gain.
Collapse
Affiliation(s)
- L Cao
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark.
| | - H A Mulder
- Animal Breeding and Genomics Group, Wageningen University and Research, 6700 AH Wageningen, the Netherlands
| | - H Liu
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - H M Nielsen
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark
| | - A C S Rensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830 Tjele, Denmark; Danish Pig Research Centre, SEGES, Axeltorv 3, 1609 Copenhagen V, Denmark
| |
Collapse
|