1
|
Lana MVG, Antunes F, Tessarollo NG, Strauss BE. Stable expression of shRNA for the control of recombinant adenovirus replication. Braz J Med Biol Res 2023; 56:e12682. [PMID: 37493770 PMCID: PMC10361640 DOI: 10.1590/1414-431x2023e12682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/24/2023] [Indexed: 07/27/2023] Open
Abstract
Preventing the replication of adenovirus could have practical uses, such as controlling infection with wild-type virus or in applications involving recombinant vectors. Mainly transient methods have been used to inhibit adenovirus replication, including siRNA or drugs. Here, we tested whether stable expression of shRNA designed to target hexon, Iva2, or pol can inhibit the replication of a recombinant adenoviral vector, Ad-LacZ (serotype 5, E1/E3 deleted), in 293T cells. Significant knockdown correlating with reduced Ad-LacZ replication was achieved only when hexon was targeted. Cell sorting and isolation of cellular clones further accentuated knockdown of the hexon transcript, reduced protein levels by more than 90%, and diminished adenovirus production. As visualized by transmission electron microscopy, the cellular clone expressing the hexon-specific shRNA yielded 89.2% fewer particles compared to the parental 293T cells. Full scale production followed by purification revealed a 90.2% reduction in Ad-LacZ biological titer. These results support the notion that stable expression of shRNA can be used as a means to control adenovirus replication.
Collapse
Affiliation(s)
- M V G Lana
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - F Antunes
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| | - N G Tessarollo
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Bioinformática e Biologia Computacional, Instituto Nacional do Câncer, Ministério da Saúde, Rio de Janeiro, RJ, Brasil
| | - B E Strauss
- Laboratório de Vetores Virais, Centro de Investigação Translacional em Oncologia/CTO/LIM24, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
2
|
Liu W, Zhang L, Cai Y, Zhang Q, Chen D, Qiu S, Wang Y, Xu D, Gu S, Li X, Dai J, Liu Q, Zhou R, Tian X. Human Adenovirus Subtype 21a Isolates From Children With Severe Lower Respiratory Illness in China. Front Microbiol 2022; 13:924172. [PMID: 35783397 PMCID: PMC9244545 DOI: 10.3389/fmicb.2022.924172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Human adenovirus type 21 (HAdV-21) is an important pathogen associated with acute respiratory infection (ARI), but it was rarely reported and characterized so far. In this study, 151 of 1,704 (8.9%) pediatric patients (≤14 years old) hospitalized with ARI in Guangzhou, China in 2019 were positive for HAdV which was the third most frequently detected pathogen. Two HAdV-21-positive patients presented with severe lower respiratory illness and had similar initial symptoms at onset of illness. Then two HAdV-21 strains were isolated and characterized. The two HAdV-21 strains were sequenced and classified as subtype 21a with genomes closely related to strain BB/201903 found in Bengbu, China in March 2019. Phylogenetic analysis for whole genome and major antigen proteins of global HAdV-21 strains showed that HAdV-21 could be classified into two branches, branch 1 including genotype 21p, branch 2 including all other strains dividing into genotype 21a and 21b. There was no significant difference in the plaque size, or the replication curves between the two HAdV-21a strains and the prototype strain HAdV-21p AV-1645. However, there were five highly variable regions (HVR1, HVR3, HVR4, HVR5, and HVR7) in the hexon protein that varied between two branches. Mice immunized with one branch strain showed 2-4-fold lower neutralizing antibody titers against another branch strain. In summary, this study firstly reported two HAdV-21a infections of children in China, characterized two isolates of HAdV-21a associated with severe lower respiratory illness; our results could be important for understanding the HAdV-21 epidemiology and pathogenic, and for developing HAdV-21 vaccine and drug.
Collapse
Affiliation(s)
- Wenkuan Liu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Yong Cai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Qiong Zhang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Dehui Chen
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Shuyan Qiu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Duo Xu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Shujun Gu
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Xiao Li
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Jing Dai
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
| | - Qian Liu
- Scientific Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Qian Liu,
| | - Rong Zhou
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
- Rong Zhou,
| | - Xingui Tian
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Respiratory Health Guangzhou Medical University, Guangzhou, China
- *Correspondence: Xingui Tian,
| |
Collapse
|
3
|
Development of Rapid and Visual Nucleic Acid Detection Methods towards Four Serotypes of Human Adenovirus Species B Based on RPA-LF Test. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9957747. [PMID: 34646888 PMCID: PMC8505065 DOI: 10.1155/2021/9957747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022]
Abstract
Objectives Human adenoviruses (HAdV) are classified as 7 HAdV species, and some serotypes in species B like HAdV 3, HAdV 7, HAdV 21, and HAdV 55 caused severe symptoms, even fatalities. Patients may be misdiagnosed and inadequately treated without reliable and practical methods for HAdV serotyping. Developing rapid, sensitive, and specific diagnostic methods for HAdV is critical. Methods Detection methods were established based on a recombinase polymerase amplification (RPA) assay and lateral flow (LF) test. Specific target sequence was screened, targeting which, primers and probes were designed, synthesized, and screened for establishing assay with high amplification efficiency. Primer or probe concentrations and amplification time were optimized. Detection limit, sensitivity, and specificity were evaluated. Results and Conclusions. Simple, sensitive, and specific RPA-LF methods for detection of four serotypes of HAdV together or separately were established, which had detection limits of 10 to 280 copies/reaction comparable to real-time PCR without recognizing other pathogens. The sensitivity and specificity were >92% and >98%, respectively, evaluated by limited clinical samples. The detection can be completed in 25 min without requirement of any instrument except a constant temperature equipment, showing superior detection performance and promising for a wide use in the field and resource-limited area.
Collapse
|