1
|
Hassanzadeh K, Liu J, Maddila S, Mouradian MM. Posttranslational Modifications of α-Synuclein, Their Therapeutic Potential, and Crosstalk in Health and Neurodegenerative Diseases. Pharmacol Rev 2024; 76:1254-1290. [PMID: 39164116 DOI: 10.1124/pharmrev.123.001111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024] Open
Abstract
α-Synuclein (α-Syn) aggregation in Lewy bodies and Lewy neurites has emerged as a key pathogenetic feature in Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Various factors, including posttranslational modifications (PTMs), can influence the propensity of α-Syn to misfold and aggregate. PTMs are biochemical modifications of a protein that occur during or after translation and are typically mediated by enzymes. PTMs modulate several characteristics of proteins including their structure, activity, localization, and stability. α-Syn undergoes various posttranslational modifications, including phosphorylation, ubiquitination, SUMOylation, acetylation, glycation, O-GlcNAcylation, nitration, oxidation, polyamination, arginylation, and truncation. Different PTMs of a protein can physically interact with one another or work together to influence a particular physiological or pathological feature in a process known as PTMs crosstalk. The development of detection techniques for the cooccurrence of PTMs in recent years has uncovered previously unappreciated mechanisms of their crosstalk. This has led to the emergence of evidence supporting an association between α-Syn PTMs crosstalk and synucleinopathies. In this review, we provide a comprehensive evaluation of α-Syn PTMs, their impact on misfolding and pathogenicity, the pharmacological means of targeting them, and their potential as biomarkers of disease. We also highlight the importance of the crosstalk between these PTMs in α-Syn function and aggregation. Insight into these PTMS and the complexities of their crosstalk can improve our understanding of the pathogenesis of synucleinopathies and identify novel targets of therapeutic potential. SIGNIFICANCE STATEMENT: α-Synuclein is a key pathogenic protein in Parkinson's disease and other synucleinopathies, making it a leading therapeutic target for disease modification. Multiple posttranslational modifications occur at various sites in α-Synuclein and alter its biophysical and pathological properties, some interacting with one another to add to the complexity of the pathogenicity of this protein. This review details these modifications, their implications in disease, and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Jun Liu
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - Santhosh Maddila
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| | - M Maral Mouradian
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, and Department of Neurology, Rutgers Biomedical and Health Sciences, Piscataway, New Jersey
| |
Collapse
|
2
|
Liu S, Deshmukh V, Wang F, Liang J, Cusick J, Li X, Martin JF. Myocardial Infarction Suppresses Protein Synthesis and Causes Decoupling of Transcription and Translation. JACC Basic Transl Sci 2024; 9:792-807. [PMID: 39070274 PMCID: PMC11282883 DOI: 10.1016/j.jacbts.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 07/30/2024]
Abstract
Gene expression involves transcription, translation, and mRNA and protein degradation. Advanced RNA sequencing measures mRNA levels for cell state assessment, but mRNA level does not fully reflect protein level. Identifying heart cell proteomes and their stress response is crucial. Using a cardiomyocyte-specific mouse model, we tracked protein synthesis after myocardial infarction. Our results showed that myocardial infarction suppresses protein synthesis and unveils a decoupling of translation and transcription regulation in cardiomyocytes.
Collapse
Affiliation(s)
- Shijie Liu
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- (currently) Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vaibhav Deshmukh
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Fangfei Wang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jie Liang
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jenna Cusick
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Xiao Li
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
| | - James F. Martin
- Cardiomyocyte Renewal Laboratory, Texas Heart Institute, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
- Gene Editing Laboratory, Texas Heart Institute, Houston, Texas, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Liu R, Li L, Wang Z, Zhu J, Ji Y. Acetylated Histone Modifications: Intersection of Diabetes and Atherosclerosis. J Cardiovasc Pharmacol 2024; 83:207-219. [PMID: 37989137 DOI: 10.1097/fjc.0000000000001516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
ABSTRACT Worldwide, type 2 diabetes is predominant form of diabetes, and it is mainly affected by the environment. Furthermore, the offspring of patients with type 2 diabetes and metabolic disorder syndrome may have a higher risk of diabetes and cardiovascular disease, which indicates that the environmental impact on diabetes prevalence can be transmitted across generations. In the process of diabetes onset and intergenerational transmission, the genetic structure of the individual is not directly changed but is regulated by epigenetics. In this process, genes or histones are modified, resulting in selective expression of proteins. This modification will affect not only the onset of diabetes but also the related onset of atherosclerosis. Acetylation and deacetylation may be important regulatory factors for the above lesions. Therefore, in this review, based on the whole process of atherosclerosis evolution, we explored the possible existence of acetylation/deacetylation caused by diabetes. However, because of the lack of atherosclerosis-related acetylation studies directly based on diabetic models, we also used a small number of experiments involving nondiabetic models of related molecular mechanisms.
Collapse
Affiliation(s)
| | | | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China; and
| | - Jie Zhu
- Department of Cardiology, The Lu'an Hospital Affiliated to Anhui Medical University, The Lu' an People's Hospital, Lu'an, China
| | | |
Collapse
|
4
|
Mohammadi S, Moghadam MD, Nasiriasl M, Akhzari M, Barazesh M. Insights into the Therapeutic and Pharmacological Properties of Resveratrol as a Nutraceutical Antioxidant Polyphenol in Health Promotion and Disease Prevention. Curr Rev Clin Exp Pharmacol 2024; 19:327-354. [PMID: 38192151 DOI: 10.2174/0127724328268507231218051058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/10/2024]
Abstract
Resveratrol (3, 5, 4'-trihydroxystilbene) is a polyphenolic derivative with herbal origin. It has attracted considerable attention in recent decades. Many studies have revealed the benefits of Resveratrol over several human disease models, including heart and neurological diseases, nephroprotective, immune regulation, antidiabetic, anti-obesity, age-related diseases, antiviral, and anticancer in experimental and clinical conditions. Recently, the antioxidant and anti-inflammatory activities of Resveratrol have been observed, and it has been shown that Resveratrol reduces inflammatory biomarkers, such as tissue degradation factor, cyclooxygenase 2, nitric oxide synthase, and interleukins. All of these activities appear to be dependent on its structural properties, such as the number and position of the hydroxyl group, which regulates oxidative stress, cell death, and inflammation. Resveratrol is well tolerated and safe even at higher pharmacological doses and desirably affects cardiovascular, neurological, and diabetic diseases. Consequently, it is plausible that Resveratrol can be regarded as a beneficial nutritional additive and a complementary drug, particularly for therapeutic applications. The present review provides an overview of currently available investigations on preventive and therapeutic characteristics and the main molecular mechanisms of Resveratrol and its potent derivatives in various diseases. Thus, this review would enhance knowledge and information about Resveratrol and encourage researchers worldwide to consider it as a pharmaceutical drug to struggle with future health crises against different human disorders.
Collapse
Affiliation(s)
- Shiva Mohammadi
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Dalaei Moghadam
- Razi Herbal Medicines Research Center, Department of Endodontic, Faculty of Dentistry, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Nasiriasl
- Radiology Department, Fasa University of Medical Sciences, Fasa, Iran
| | - Morteza Akhzari
- School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Mahdi Barazesh
- School of Paramedical Sciences, Gerash University of Medical Sciences, Gerash, Iran
| |
Collapse
|
5
|
Liu H, Shih YH, Wang WL, Chang WL, Wang YC. UBE1C is upregulated and promotes neddylation of p53 in lung cancer. FASEB J 2023; 37:e23181. [PMID: 37668436 DOI: 10.1096/fj.202300629r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
NEDDylation is a type of protein post-translational modification that has high similarity to ubiquitination. UBE1C encodes NEDDylation E1 enzyme, locates at chromatin region 3p14.1 and shows high gene dosage amplification frequency in both Asian and Caucasian lung cancer patients. However, its NEDDylation substrates and roles in tumorigenesis remain elucidated. In this study, we aim to investigate the oncogenic role of UBE1C and its involvement in how NEDDylation regulates p53 in lung cancer. We found that UBE1C mRNA overexpression and DNA amplification in most of the lung cell lines and cancer patients. Patients with UBE1C overexpression showed poor prognosis. Moreover, we demonstrated that overexpression of UBE1C and NEDD8, a NEDDylation moiety, resulted in the p53 NEDDylation with inhibition of p53 acetylation at K373 residue. Importantly, UBE1C-mediated NEDDylation downregulated the transcriptional activity of p53 by inhibiting p53 ability to target promoter regions of its downstream transcription targets, consequently inhibiting the promoter activities and the expression of mRNA and protein of the p53 downstream genes including p21 and PTEN. In addition, UBE1C and NEDD8 overexpression promoted migration, invasion, and proliferation of lung cancer cells. Our findings suggest that UBE1C acts as an oncogene with prognostic potential and highlight a potential role of UBE1C-mediated NEDDylation in downregulation of p53 transcriptional activity in lung cancer.
Collapse
Affiliation(s)
- Hsun Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yung-Hsin Shih
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Lun Wang
- Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wei-Lun Chang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Chen X, Shi C, Gao J, Jumbo JCC, Wang Y, Li X, Zhao C, Yu H, Li P, Aung LHH. Evaluation of lncRNA Expression Pattern and Potential Role in Heart Failure Pathology. DISEASE MARKERS 2023; 2023:2369352. [PMID: 37476628 PMCID: PMC10356452 DOI: 10.1155/2023/2369352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 07/22/2023]
Abstract
During the last few decades, the morbidity and mortality of heart failure (HF) have remained on an upward trend. Despite the advances in therapeutic and diagnostic measures, there are still many aspects requiring further research. This study is aimed at finding potential long noncoding RNAs (lncRNAs) that could aid with the diagnosis and treatment of HF. We performed RNA sequencing on the peripheral blood of healthy controls as well as HF patients. The expression of lncRNAs was validated by RT-qPCR. Bioinformatic analysis was performed to investigate the possible mechanism of differentially expressed lncRNAs and mRNAs. The diagnostic value of lncRNAs was analysed by ROC analysis. Finally, a total of 207 mRNAs and 422 lncRNAs were identified. GO and KEGG pathway analyses revealed that biological pathways such as immune response, regulation of cell membrane, and transcriptional regulatory process were associated with the pathological progress of HF. The lncRNA-mRNA coexpression network was conducted, and several mRNAs were identified as key potential pathological targets, while lncRNA CHST11, MIR29B2CHG, CR381653.1, and FP236383.2 presented a potential diagnostic value for HF. These findings provide novel insights for the underlying mechanisms and possible therapeutic targets for HF.
Collapse
Affiliation(s)
- Xiatian Chen
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | | | - Jinning Gao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Juan Carlos Cueva Jumbo
- School of Preclinical Medicine, Nanobody Research Center, Guangxi Medical University, Nanning, China
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xin Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Cheng Zhao
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Yu
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Lynn Htet Htet Aung
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
7
|
Gulhane P, Singh S. Unraveling the Post-Translational Modifications and therapeutical approach in NSCLC pathogenesis. Transl Oncol 2023; 33:101673. [PMID: 37062237 PMCID: PMC10133877 DOI: 10.1016/j.tranon.2023.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is the most prevalent kind of lung cancer with around 85% of total lung cancer cases. Despite vast therapies being available, the survival rate is low (5 year survival rate is 15%) making it essential to comprehend the mechanism for NSCLC cell survival and progression. The plethora of evidences suggests that the Post Translational Modification (PTM) such as phosphorylation, methylation, acetylation, glycosylation, ubiquitination and SUMOylation are involved in various types of cancer progression and metastasis including NSCLC. Indeed, an in-depth understanding of PTM associated with NSCLC biology will provide novel therapeutic targets and insight into the current sophisticated therapeutic paradigm. Herein, we reviewed the key PTMs, epigenetic modulation, PTMs crosstalk along with proteogenomics to analyze PTMs in NSCLC and also, highlighted how epi‑miRNA, miRNA and PTM inhibitors are key modulators and serve as promising therapeutics.
Collapse
Affiliation(s)
- Pooja Gulhane
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SPPU Campus, Pune 411007, India.
| |
Collapse
|
8
|
Human centenarian-associated SIRT6 mutants modulate hepatocyte metabolism and collagen deposition in multilineage hepatic 3D spheroids. GeroScience 2022; 45:1177-1196. [PMID: 36534275 PMCID: PMC9886743 DOI: 10.1007/s11357-022-00713-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), encompassing fatty liver and its progression into nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC), is one of the rapidly rising health concerns worldwide. SIRT6 is an essential nuclear sirtuin that regulates numerous pathological processes including insulin resistance and inflammation, and recently it has been implicated in the amelioration of NAFLD progression. SIRT6 overexpression protects from formation of fibrotic lesions. However, the underlying molecular mechanisms are not fully delineated. Moreover, new allelic variants of SIRT6 (N308K/A313S) were recently associated with the longevity in Ashkenazi Jews by improving genome maintenance and DNA repair, suppressing transposons and killing cancer cells. Whether these new SIRT6 variants play different or enhanced roles in liver diseases is currently unknown. In this study, we aimed to clarify how these new centenarian-associated SIRT6 genetic variants affect liver metabolism and associated diseases. We present evidence that overexpression of centenarian-associated SIRT6 variants dramatically altered the metabolomic and secretomic profiles of unchallenged immortalized human hepatocytes (IHH). Most amino acids were increased in the SIRT6 N308K/A313S overexpressing IHH when compared to IHH transfected with the SIRT6 wild-type sequence. Several unsaturated fatty acids and glycerophospholipids were increased, and ceramide tended to be decreased upon SIRT6 N308K/A313S overexpression. Furthermore, we found that overexpression of SIRT6 N308K/A313S in a 3D hepatic spheroid model formed by the co-culture of human immortalized hepatocytes (IHH) and hepatic stellate cells (LX2) inhibited collagen deposition and fibrotic gene expression in absence of metabolic or dietary challenges. Hence, our findings suggest that novel longevity associated SIRT6 N308K/A313S variants could favor the prevention of NASH by altering hepatocyte proteome and lipidome.
Collapse
|
9
|
Francine P. Systems Biology: New Insight into Antibiotic Resistance. Microorganisms 2022; 10:2362. [PMID: 36557614 PMCID: PMC9781975 DOI: 10.3390/microorganisms10122362] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Over the past few decades, antimicrobial resistance (AMR) has emerged as an important threat to public health, resulting from the global propagation of multidrug-resistant strains of various bacterial species. Knowledge of the intrinsic factors leading to this resistance is necessary to overcome these new strains. This has contributed to the increased use of omics technologies and their extrapolation to the system level. Understanding the mechanisms involved in antimicrobial resistance acquired by microorganisms at the system level is essential to obtain answers and explore options to combat this resistance. Therefore, the use of robust whole-genome sequencing approaches and other omics techniques such as transcriptomics, proteomics, and metabolomics provide fundamental insights into the physiology of antimicrobial resistance. To improve the efficiency of data obtained through omics approaches, and thus gain a predictive understanding of bacterial responses to antibiotics, the integration of mathematical models with genome-scale metabolic models (GEMs) is essential. In this context, here we outline recent efforts that have demonstrated that the use of omics technology and systems biology, as quantitative and robust hypothesis-generating frameworks, can improve the understanding of antibiotic resistance, and it is hoped that this emerging field can provide support for these new efforts.
Collapse
Affiliation(s)
- Piubeli Francine
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, 41012 Seville, Spain
| |
Collapse
|
10
|
Liu X, Xu LL, Lu YP, Yang T, Gu XY, Wang L, Liu Y. Deep_KsuccSite: A novel deep learning method for the identification of lysine succinylation sites. Front Genet 2022; 13:1007618. [PMID: 36246655 PMCID: PMC9557156 DOI: 10.3389/fgene.2022.1007618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of lysine (symbol Lys or K) succinylation (Ksucc) sites centralizes the basis for disclosing the mechanism and function of lysine succinylation modifications. Traditional experimental methods for Ksucc site ientification are often costly and time-consuming. Therefore, it is necessary to construct an efficient computational method to prediction the presence of Ksucc sites in protein sequences. In this study, we proposed a novel and effective predictor for the identification of Ksucc sites based on deep learning algorithms that was termed as Deep_KsuccSite. The predictor adopted Composition, Transition, and Distribution (CTD) Composition (CTDC), Enhanced Grouped Amino Acid Composition (EGAAC), Amphiphilic Pseudo-Amino Acid Composition (APAAC), and Embedding Encoding methods to encode peptides, then constructed three base classifiers using one-dimensional (1D) convolutional neural network (CNN) and 2D-CNN, and finally utilized voting method to get the final results. K-fold cross-validation and independent testing showed that Deep_KsuccSite could serve as an effective tool to identify Ksucc sites in protein sequences. In addition, the ablation experiment results based on voting, feature combination, and model architecture showed that Deep_KsuccSite could make full use of the information of different features to construct an effective classifier. Taken together, we developed Deep_KsuccSite in this study, which was based on deep learning algorithm and could achieved better prediction accuracy than current methods for lysine succinylation sites. The code and dataset involved in this methodological study are permanently available at the URL https://github.com/flyinsky6/Deep_KsuccSite.
Collapse
Affiliation(s)
- Xin Liu
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Xin Liu, ; Liang Wang, ; Yong Liu,
| | - Lin-Lin Xu
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Ya-Ping Lu
- College of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Ting Yang
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Xin-Yu Gu
- School of Medical Informatics and Engineering, Xuzhou Medical University, Xuzhou, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Xin Liu, ; Liang Wang, ; Yong Liu,
| | - Yong Liu
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Xin Liu, ; Liang Wang, ; Yong Liu,
| |
Collapse
|
11
|
Zhao M, Aweya JJ, Feng Q, Zheng Z, Yao D, Zhao Y, Chen X, Zhang Y. Ammonia stress affects the structure and function of hemocyanin in Penaeus vannamei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113827. [PMID: 36068754 DOI: 10.1016/j.ecoenv.2022.113827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic factors and climate change have serious effects on the aquatic ecosystem and aquaculture. Among water pollutants, ammonia has the greatest impact on aquaculture organisms such as penaeid shrimp because it makes them more susceptible to infections. In this study, we explored the effects of ammonia stress (0, 50, 100, and 150 mg/L) on the molecular structure and functions of the multifunctional respiratory protein hemocyanin (HMC) in Penaeus vannamei. While the mRNA expression of Penaeus vannamei hemocyanin (PvHMC) was up-regulated after ammonia stress, both plasma hemocyanin protein and oxyhemocyanin (OxyHMC) levels decreased. Moreover, ammonia stress changed the molecular structure of hemocyanin, modulated the expression of protein phosphatase 2 A (PP2A) and casein kinase 2α (CK2α) to regulate the phosphorylation modification of hemocyanin, and enhanced its degradation into fragments by trypsin. Under moderate ammonia stress conditions, hemocyanin also undergoes glycosylation to improve its in vitro antibacterial activity and binding with Gram-negative (Vibrio parahaemolyticus) and Gram-positive (Staphylococcus aureus) bacteria, albeit differently. The current findings indicate that P. vannamei hemocyanin undergoes adaptive molecular modifications under ammonia stress enabling the shrimp to survive and counteract the consequences of the stress.
Collapse
Affiliation(s)
- Mingming Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; College of Ocean Food and Biological Engineering, Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Qian Feng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China
| | - Yongzhen Zhao
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning 530021, China
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
12
|
Zhu F, Yang S, Meng F, Zheng Y, Ku X, Luo C, Hu G, Liang Z. Leveraging Protein Dynamics to Identify Functional Phosphorylation Sites using Deep Learning Models. J Chem Inf Model 2022; 62:3331-3345. [PMID: 35816597 DOI: 10.1021/acs.jcim.2c00484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Accurate prediction of post-translational modifications (PTMs) is of great significance in understanding cellular processes, by modulating protein structure and dynamics. Nowadays, with the rapid growth of protein data at different "omics" levels, machine learning models largely enriched the prediction of PTMs. However, most machine learning models only rely on protein sequence and little structural information. The lack of the systematic dynamics analysis underlying PTMs largely limits the PTM functional predictions. In this research, we present two dynamics-centric deep learning models, namely, cDL-PAU and cDL-FuncPhos, by incorporating sequence, structure, and dynamics-based features to elucidate the molecular basis and underlying functional landscape of PTMs. cDL-PAU achieved satisfactory area under the curve (AUC) scores of 0.804-0.888 for predicting phosphorylation, acetylation, and ubiquitination (PAU) sites, while cDL-FuncPhos achieved an AUC value of 0.771 for predicting functional phosphorylation (FuncPhos) sites, displaying reliable improvements. Through a feature selection, the dynamics-based coupling and commute ability show large contributions in discovering PAU sites and FuncPhos sites, suggesting the allosteric propensity for important PTMs. The application of cDL-FuncPhos in three oncoproteins not only corroborates its strong performance in FuncPhos prioritization but also gains insight into the physical basis for the functions. The source code and data set of cDL-PAU and cDL-FuncPhos are available at https://github.com/ComputeSuda/PTM_ML.
Collapse
Affiliation(s)
- Fei Zhu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Sijie Yang
- School of Computer Science and Technology, Soochow University, Suzhou 215006, China
| | - Fanwang Meng
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton L8S 4L8, Ontario, Canada
| | - Yuxiang Zheng
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Guang Hu
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou 215123, China.,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
13
|
Role of Posttranslational Modifications of Proteins in Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3137329. [PMID: 35855865 PMCID: PMC9288287 DOI: 10.1155/2022/3137329] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023]
Abstract
Cardiovascular disease (CVD) has become a leading cause of mortality and morbidity globally, making it an urgent concern. Although some studies have been performed on CVD, its molecular mechanism remains largely unknown for all types of CVD. However, recent in vivo and in vitro studies have successfully identified the important roles of posttranslational modifications (PTMs) in various diseases, including CVD. Protein modification, also known as PTMs, refers to the chemical modification of specific amino acid residues after protein biosynthesis, which is a key process that can influence the activity or expression level of proteins. Studies on PTMs have contributed directly to improving the therapeutic strategies for CVD. In this review, we examined recent progress on PTMs and highlighted their importance in both physiological and pathological conditions of the cardiovascular system. Overall, the findings of this review contribute to the understanding of PTMs and their potential roles in the treatment of CVD.
Collapse
|
14
|
Yadav AK, Banerjee SK, Das B, Chaudhary K. Editorial: Systems Biology and Omics Approaches for Understanding Complex Disease Biology. Front Genet 2022; 13:896818. [PMID: 35495146 PMCID: PMC9039331 DOI: 10.3389/fgene.2022.896818] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
- *Correspondence: Amit Kumar Yadav,
| | - Sanjay Kumar Banerjee
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Kumardeep Chaudhary
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Ai X, Yu P, Peng L, Luo L, Liu J, Li S, Lai X, Luan F, Meng X. Berberine: A Review of its Pharmacokinetics Properties and Therapeutic Potentials in Diverse Vascular Diseases. Front Pharmacol 2022; 12:762654. [PMID: 35370628 PMCID: PMC8964367 DOI: 10.3389/fphar.2021.762654] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Traditional Chinese medicine plays a significant role in the treatment of various diseases and has attracted increasing attention for clinical applications. Vascular diseases affecting vasculature in the heart, cerebrovascular disease, atherosclerosis, and diabetic complications have compromised quality of life for affected individuals and increase the burden on health care services. Berberine, a naturally occurring isoquinoline alkaloid form Rhizoma coptidis, is widely used in China as a folk medicine for its antibacterial and anti-inflammatory properties. Promisingly, an increasing number of studies have identified several cellular and molecular targets for berberine, indicating its potential as an alternative therapeutic strategy for vascular diseases, as well as providing novel evidence that supports the therapeutic potential of berberine to combat vascular diseases. The purpose of this review is to comprehensively and systematically describe the evidence for berberine as a therapeutic agent in vascular diseases, including its pharmacological effects, molecular mechanisms, and pharmacokinetics. According to data published so far, berberine shows remarkable anti-inflammatory, antioxidant, antiapoptotic, and antiautophagic activity via the regulation of multiple signaling pathways, including AMP-activated protein kinase (AMPK), nuclear factor κB (NF-κB), mitogen-activated protein kinase silent information regulator 1 (SIRT-1), hypoxia-inducible factor 1α (HIF-1α), vascular endothelial growth factor phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), janus kinase 2 (JAK-2), Ca2+ channels, and endoplasmic reticulum stress. Moreover, we discuss the existing limitations of berberine in the treatment of vascular diseases, and give corresponding measures. In addition, we propose some research perspectives and challenges, and provide a solid evidence base from which further studies can excavate novel effective drugs from Chinese medicine monomers.
Collapse
Affiliation(s)
- Xiaopeng Ai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Peiling Yu
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lixia Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengqian Li
- Department of Pharmacy, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xianrong Lai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Luan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
Symmetry of Post-Translational Modifications in a Human Enzyme. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Paraoxonase 2 (PON2) is a member of a small family of human lactonases. Recently, post-translational modifications (PTMs) of PON2 were highlighted, one of which involved the modulation of the enzyme activity. Furthermore, two important single nucleotide polymorphisms (SNPs) involved in type 2 diabetes and its consequences, were found to modulate the enzyme activity as well. The position on the PON2 structural model of both residues corresponding to SNPs and PTMs suggested a symmetry of the molecule. By sequence and structure superposition we were able to confirm this finding. The result will be discussed in light of the evolution of symmetry in biological molecules and their function.
Collapse
|
17
|
de Brevern AG, Rebehmed J. Current status of PTMs structural databases: applications, limitations and prospects. Amino Acids 2022; 54:575-590. [PMID: 35020020 DOI: 10.1007/s00726-021-03119-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
Protein 3D structures, determined by their amino acid sequences, are the support of major crucial biological functions. Post-translational modifications (PTMs) play an essential role in regulating these functions by altering the physicochemical properties of proteins. By virtue of their importance, several PTM databases have been developed and released in decades, but very few of these databases incorporate real 3D structural data. Since PTMs influence the function of the protein and their aberrant states are frequently implicated in human diseases, providing structural insights to understand the influence and dynamics of PTMs is crucial for unraveling the underlying processes. This review is dedicated to the current status of databases providing 3D structural data on PTM sites in proteins. Some of these databases are general, covering multiple types of PTMs in different organisms, while others are specific to one particular type of PTM, class of proteins or organism. The importance of these databases is illustrated with two major types of in silico applications: predicting PTM sites in proteins using machine learning approaches and investigating protein structure-function relationships involving PTMs. Finally, these databases suffer from multiple problems and care must be taken when analyzing the PTMs data.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Université de Paris, INSERM, UMR_S 1134, DSIMB, 75739, Paris, France.,Université de la Réunion, INSERM, UMR_S 1134, DSIMB, 97715, Saint-Denis de La Réunion, France.,Laboratoire d'Excellence GR-Ex, 75739, Paris, France
| | - Joseph Rebehmed
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
18
|
Morales-Tarré O, Alonso-Bastida R, Arcos-Encarnación B, Pérez-Martínez L, Encarnación-Guevara S. Protein lysine acetylation and its role in different human pathologies: a proteomic approach. Expert Rev Proteomics 2021; 18:949-975. [PMID: 34791964 DOI: 10.1080/14789450.2021.2007766] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Lysine acetylation is a reversible post-translational modification (PTM) regulated through the action of specific types of enzymes: lysine acetyltransferases (KATs) and lysine deacetylases (HDACs), in addition to bromodomains, which are a group of conserved domains which identify acetylated lysine residues, several of the players in the process of protein acetylation, including enzymes and bromodomain-containing proteins, have been related to the progression of several diseases. The combination of high-resolution mass spectrometry-based proteomics, and immunoprecipitation to enrich acetylated peptides has contributed in recent years to expand the knowledge about this PTM described initially in histones and nuclear proteins, and is currently reported in more than 5000 human proteins, that are regulated by this PTM. AREAS COVERED This review presents an overview of the main participant elements, the scenario in the development of protein lysine acetylation, and its role in different human pathologies. EXPERT OPINION Acetylation targets are practically all cellular processes in eukaryotes and prokaryotes organisms. Consequently, this modification has been linked to many pathologies like cancer, viral infection, obesity, diabetes, cardiovascular, and nervous system-associated diseases, to mention a few relevant examples. Accordingly, some intermediate mediators in the acetylation process have been projected as therapeutic targets.
Collapse
Affiliation(s)
- Orlando Morales-Tarré
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramiro Alonso-Bastida
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Bolivar Arcos-Encarnación
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leonor Pérez-Martínez
- Laboratorio de Neuroinmunobiología, Departamento de Medicina Molecular Y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Sergio Encarnación-Guevara
- Laboratorio de Proteómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
19
|
Wu W, Zhao J, Xiao J, Wu W, Xie L, Xie X, Yang C, Yin D, Hu K. CHFR-mediated degradation of RNF126 confers sensitivity to PARP inhibitors in triple-negative breast cancer cells. Biochem Biophys Res Commun 2021; 573:62-68. [PMID: 34388456 DOI: 10.1016/j.bbrc.2021.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Ring-finger protein 126 (RNF126), an E3 ubiquitin ligase, plays crucial roles in various biological processes, including cell proliferation, DNA damage repair, and intracellular vesicle trafficking. Whether RNF126 is modulated by posttranslational modifications is poorly understood. Here, we show that PARP1 interacts with and poly(ADP)ribosylates RNF126, which then recruits the PAR-binding E3 ubiquitin ligase CHFR to promote ubiquitination and degradation of RNF126. Moreover, RNF126 is required for the activation of ATR-Chk1 signaling induced by either irradiation (IR) or a PARP inhibitor (PARPi), and depletion of RNF126 increases the sensitivity of triple-negative breast cancer (TNBC) cells to PARPi treatment. Our findings suggest that PARPi-mediated upregulation of RNF126 protein stability contributes to TNBC cell resistance to PARPi. Therefore, targeting the E3 ubiquitin ligase RNF126 may be a novel treatment for overcoming the resistance of TNBC cells to PARPi in clinical trials.
Collapse
Affiliation(s)
- Wenjing Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianli Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jianhong Xiao
- Department of Hematology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518000, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Radiotherapy of the First Affiliated Hospital, University of South China, Hengyang, 421001, China
| | - Limin Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaojuan Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Chaoye Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
20
|
Decoding post translational modification crosstalk with proteomics. Mol Cell Proteomics 2021; 20:100129. [PMID: 34339852 PMCID: PMC8430371 DOI: 10.1016/j.mcpro.2021.100129] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modification (PTM) of proteins allows cells to regulate protein functions, transduce signals and respond to perturbations. PTMs expand protein functionality and diversity, which leads to increased proteome complexity. PTM crosstalk describes the combinatorial action of multiple PTMs on the same or on different proteins for higher order regulation. Here we review how recent advances in proteomic technologies, mass spectrometry instrumentation, and bioinformatics spurred the proteome-wide identification of PTM crosstalk through measurements of PTM sites. We provide an overview of the basic modes of PTM crosstalk, the proteomic methods to elucidate PTM crosstalk, and approaches that can inform about the functional consequences of PTM crosstalk. Description of basic modules and different modes of PTM crosstalk. Overview of current proteomic methods to identify and infer PTM crosstalk. Discussion of large-scale approaches to characterize functional PTM crosstalk. Future directions and potential proteomic methods for elucidating PTM crosstalk.
Collapse
|
21
|
Wang Y, Li S, Rentfrow G, Chen J, Zhu H, Suman SP. Myoglobin Post-Translational Modifications Influence Color Stability of Beef Longissimus Lumborum. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Post-translational modifications (PTM) of proteins play critical roles in biological processes. PTM of muscle proteins influence meat quality. Nonetheless, myoglobin (Mb) PTM and their impact on fresh beef color stability have not been characterized yet. Therefore, our objectives were to identify Mb PTM in beef longissimus lumborum muscle during postmortem aging and to characterize their influence on color stability. The longissimus lumborum muscles from 9 (n = 9) beef carcasses (24 h postmortem) were subjected to wet aging for 0, 7, 14, and 21 d. At the end of each wet-aging period, steaks were fabricated. One steak for analyses of PTM was immediately frozen at −80°C, whereas other steaks were assigned to refrigerated storage in the darkness under aerobic packaging. Instrumental color and biochemical attributes were evaluated on day 0, 3, or 6 of storage. Mb PTM were analyzed using two-dimensional electrophoresis and tandem mass spectrometry. Surface redness (a* value), color stability, and Mb concentration decreased (P < 0.05) upon aging. Gel image analyses identified 6 Mb spots with similar molecular weight (17 kDa) but different isoelectric pH. Tandem mass spectrometry identified multiple PTM (phosphorylation, methylation, carboxymethylation, acetylation, and 4-hydroxynonenal alkylation) in these 6 isoforms. The amino acids susceptible to phosphorylation were serine (S), threonine (T), and tyrosine, whereas other PTM were detected in lysine (K), arginine (R), and histidine residues. Additionally, distal histidine (position 64), critical to heme stability, was found to be alkylated. Overall, Mb PTM increased with aging. The aging-induced PTM, especially those occurring close to hydrophobic heme pocket, could disrupt Mb tertiary structure, influence heme affinity, and compromise oxygen binding capacity, leading to decreased color stability of fresh beef. Furthermore, PTM at K45, K47, and K87 were unique to Mb from non-aged beef, whereas PTM at R31, T51, K96, K98, S121, R139, and K147 were unique to Mb from aged counterparts, indicating that these Mb PTM could be used as novel biomarkers for fresh beef color stability.
Collapse
Affiliation(s)
- Yifei Wang
- University of Kentucky Department of Animal and Food Sciences
| | - Shuting Li
- University of Kentucky Department of Animal and Food Sciences
| | - Gregg Rentfrow
- University of Kentucky Department of Animal and Food Sciences
| | - Jing Chen
- University of Kentucky Proteomics Core Facility
| | - Haining Zhu
- University of Kentucky Proteomics Core Facility
| | | |
Collapse
|
22
|
Tolani P, Gupta S, Yadav K, Aggarwal S, Yadav AK. Big data, integrative omics and network biology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:127-160. [PMID: 34340766 DOI: 10.1016/bs.apcsb.2021.03.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A cell integrates various signals through a network of biomolecules that crosstalk to synergistically regulate the replication, transcription, translation and other metabolic activities of a cell. These networks regulate signal perception and processing that drives biological functions. The biological complexity cannot be fully captured by a single -omics discipline. The holistic study of an organism-in health, perturbation, exposure to environment and disease, is studied under systems biology. The bottom-up molecular approaches (genes, mRNA, protein, metabolite, etc.) have laid the foundation of current biological knowledge covering the horizon from viruses, bacteria, fungi, plants and animals. Yet, these techniques provide a rather myopic view of biology at the molecular level. To understand how the interconnected molecular components are formed and rewired in disease or exposure to environmental stimuli is the holy grail of modern biology. The omics era was heralded by the genomics revolution but advanced sequencing techniques are now also ubiquitous in transcriptomics, proteomics, metabolomics and lipidomics. Multi-omics data analysis and integration techniques are driving the quest for deeper insights into how the different layers of biomolecules talk to each other in diverse contexts.
Collapse
Affiliation(s)
- Priya Tolani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Kirti Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Pharmaceutical Biotechnology, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
23
|
Aggarwal S, Tolani P, Gupta S, Yadav AK. Posttranslational modifications in systems biology. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:93-126. [PMID: 34340775 DOI: 10.1016/bs.apcsb.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological complexity cannot be captured by genes or proteins alone. The protein posttranslational modifications (PTMs) impart functional diversity to the proteome and regulate protein structure, activity, localization and interactions. Their dynamics drive cellular signaling, growth and development while their dysregulation causes many diseases. Mass spectrometry based quantitative profiling of PTMs and bioinformatics analysis tools allow systems level insights into their network architecture. High-resolution profiling of PTM networks will advance disease understanding and precision medicine. It can accelerate the discovery of biomarkers and drug targets. This requires better tools for unbiased, high-throughput and accurate PTM identification, site localization and automated annotation on a systems level.
Collapse
Affiliation(s)
- Suruchi Aggarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; Department of Molecular Biology and Biotechnology, Cotton University, Guwahati, Assam, India
| | - Priya Tolani
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Gupta
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Amit Kumar Yadav
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
24
|
Hansen FM, Tanzer MC, Brüning F, Bludau I, Stafford C, Schulman BA, Robles MS, Karayel O, Mann M. Data-independent acquisition method for ubiquitinome analysis reveals regulation of circadian biology. Nat Commun 2021; 12:254. [PMID: 33431886 PMCID: PMC7801436 DOI: 10.1038/s41467-020-20509-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Protein ubiquitination is involved in virtually all cellular processes. Enrichment strategies employing antibodies targeting ubiquitin-derived diGly remnants combined with mass spectrometry (MS) have enabled investigations of ubiquitin signaling at a large scale. However, so far the power of data independent acquisition (DIA) with regards to sensitivity in single run analysis and data completeness have not yet been explored. Here, we develop a sensitive workflow combining diGly antibody-based enrichment and optimized Orbitrap-based DIA with comprehensive spectral libraries together containing more than 90,000 diGly peptides. This approach identifies 35,000 diGly peptides in single measurements of proteasome inhibitor-treated cells - double the number and quantitative accuracy of data dependent acquisition. Applied to TNF signaling, the workflow comprehensively captures known sites while adding many novel ones. An in-depth, systems-wide investigation of ubiquitination across the circadian cycle uncovers hundreds of cycling ubiquitination sites and dozens of cycling ubiquitin clusters within individual membrane protein receptors and transporters, highlighting new connections between metabolism and circadian regulation.
Collapse
Affiliation(s)
- Fynn M Hansen
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria C Tanzer
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franziska Brüning
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany
| | - Isabell Bludau
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Che Stafford
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria S Robles
- Institute of Medical Psychology, Faculty of Medicine, LMU, Munich, Germany.
| | - Ozge Karayel
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
25
|
Ramazi S, Allahverdi A, Zahiri J. Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 2020. [DOI: 10.1007/s12038-020-00099-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|