1
|
Khor GMS, Haghani S, Tan TRE, Lee ECY, Kannan B, Lim BY, Lee JY, Guo Z, Ko TK, Chan JY. High-Throughput Transcriptomics Identifies Chemoresistance-Associated Gene Expression Signatures in Human Angiosarcoma. Int J Mol Sci 2024; 25:10863. [PMID: 39409192 PMCID: PMC11476974 DOI: 10.3390/ijms251910863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024] Open
Abstract
Angiosarcomas, clinically aggressive cancers of endothelial origin, are a rare subtype of soft-tissue sarcomas characterized by resistance to chemotherapy and dismal prognosis. In this study, we aim to identify the transcriptomic biomarkers of chemoresistance in angiosarcoma. We examined 72 cases of Asian angiosarcomas, including 35 cases treated with palliative chemotherapy, integrating information from NanoString gene expression profiling, whole transcriptome profiling (RNA-seq), immunohistochemistry, cell line assays, and clinicopathological data. In the chemoresistant cohort (defined as stable disease or progression), we observed the significant overexpression of genes, including SPP1 (log2foldchange 3.49, adj. p = 0.0112), CXCL13, CD48, and CLEC5A, accompanied by the significant enrichment of myeloid compartment and cytokine and chemokine signaling pathways, as well as neutrophils and macrophages. RNA-seq data revealed higher SPP1 expression (p = 0.0008) in tumor tissues over adjacent normal compartments. Immunohistochemistry showed a significant moderate positive correlation between SPP1 protein and gene expression (r = 0.7016; p < 0.00110), while higher SPP1 protein expression correlated with lower chemotherapeutic sensitivity in patient-derived angiosarcoma cell lines MOLAS and ISOHAS. In addition, SPP1 mRNA overexpression positively correlated with epithelioid histology (p = 0.007), higher tumor grade (p = 0.0023), non-head and neck location (p = 0.0576), and poorer overall survival outcomes (HR 1.84, 95% CI 1.07-3.18, p = 0.0288). There was no association with tumor mutational burden, tumor inflammation signature, the presence of human herpesvirus-7, ultraviolet exposure signature, and metastatic state at diagnosis. In conclusion, SPP1 overexpression may be a biomarker of chemoresistance and poor prognosis in angiosarcoma. Further investigation is needed to uncover the precise roles and underlying mechanisms of SPP1.
Collapse
Affiliation(s)
- Glenys Mai Shia Khor
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
- Raffles Institution, 1 Raffles Institution Ln, Singapore 575954, Singapore
| | - Sara Haghani
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Tiffany Rui En Tan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Elizabeth Chun Yong Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Boon Yee Lim
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Zexi Guo
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore; (G.M.S.K.)
- Duke-NUS Medical School, 8 College Rd, Singapore 169857, Singapore
- Division of Medical Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
| |
Collapse
|
2
|
Zhao S, Ni K, Xie J, Cheng C, Zhao N, Liu J, Ji W, Wang Q, Zhang P, Liu Y. Exploring the prognostic value of BRMS1 + microglia based on single-cell anoikis regulator patterns in the immunologic microenvironment of GBM. J Neurooncol 2024; 170:101-117. [PMID: 39143438 PMCID: PMC11447114 DOI: 10.1007/s11060-024-04781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Anoikis is a specialized form of programmed cell death induced by the loss of cell adhesion to the extracellular matrix (ECM). Acquisition of anoikis resistance is a significant marker for cancer cell invasion, metastasis, therapy resistance, and recurrence. Although current research has identified multiple factors that regulate anoikis resistance, the pathological mechanisms of anoikis-mediated tumor microenvironment (TME) in glioblastoma (GBM) remain largely unexplored. METHODS Utilizing single-cell RNA sequencing (scRNA-seq) data and employing non-negative matrix factorization (NMF), we identified and characterized TME cell clusters with distinct anoikis-associated gene signatures. Prognostic and therapeutic response analyses were conducted using TCGA and CGGA datasets to assess the clinical significance of different TME cell clusters. The spatial relationship between BRMS1 + microglia and tumor cells was inferred from spatial transcriptome RNA sequencing (stRNA-seq) data. To simulate the tumor immune microenvironment, co-culture experiments were performed with microglia (HMC3) and GBM cells (U118/U251), and microglia were transfected with a BRMS1 overexpression lentivirus. Western blot or ELISA were used to detect BRMS1, M2 macrophage-specific markers, PI3K/AKT signaling proteins, and apoptosis-related proteins. The proliferation and apoptosis capabilities of tumor cells were evaluated using CCK-8, colony formation, and apoptosis assays, while the invasive and migratory abilities of tumor cells were assessed using Transwell assays. RESULTS NMF-based analysis successfully identified CD8 + T cell and microglia cell clusters with distinct gene signature characteristics. Trajectory analysis, cell communication, and gene regulatory network analyses collectively indicated that anoikis-mediated TME cell clusters can influence tumor cell development through various mechanisms. Notably, BRMS1 + AP-Mic exhibited an M2 macrophage phenotype and had significant cell communication with malignant cells. Moreover, high expression of BRMS1 + AP-Mic in TCGA and CGGA datasets was associated with poorer survival outcomes, indicating its detrimental impact on immunotherapy. Upregulation of BRMS1 in microglia may lead to M2 macrophage polarization, activate the PI3K/AKT signaling pathway through SPP1/CD44-mediated cell interactions, inhibit tumor cell apoptosis, and promote tumor proliferation and invasion. CONCLUSION This pioneering study used NMF-based analysis to reveal the important predictive value of anoikis-regulated TME in GBM for prognosis and immunotherapeutic response. BRMS1 + microglial cells provide a new perspective for a deeper understanding of the immunosuppressive microenvironment of GBM and could serve as a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Kaixiang Ni
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jiaheng Xie
- Department of Plastic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Cheng
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Ning Zhao
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Ji
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China
| | - Qi Wang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pengpeng Zhang
- Department of Lung Cancer Surgery, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.
| | - Yuankun Liu
- Department of Neurosurgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, China.
- Wuxi Medical Center of Nanjing Medical University, Wuxi, China.
| |
Collapse
|
3
|
Wu X, Xin R, Zhang Y, Yang C, Sun F, Wang Y, Zheng F. Xuebijing improves inflammation and pyroptosis of acute lung injury by up-regulating miR-181d-5p-mediated SPP1 inactivation. Clinics (Sao Paulo) 2024; 79:100336. [PMID: 38325020 PMCID: PMC10862507 DOI: 10.1016/j.clinsp.2024.100336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/17/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Xuebijing (XBJ) is widely applied in the treatment of Acute Lung Injury (ALI). This study focused on the potential mechanism of XBJ in Lipopolysaccharide (LPS)-induced ALI. METHODS The rat ALI model was established by injection of LPS (10 mg/kg) and pretreated with XBJ (4 mL/kg) three days before LPS injection. BEAS-2B cell line was stimulated with LPS (1 μg/mL) and ATP (5 mM) to induce pyroptosis, and XBJ (2 g/L) was pretreated 24h before induction. The improvement effects of XBJ on pulmonary edema, morphological changes, and apoptosis in ALI lung tissue were evaluated by lung wet/dry weight ratio, HE-staining, and TUNEL staining. Inflammatory cytokines in lung tissue and cell supernatant were determined by ELISA. pyroptosis was detected by flow cytometry. Meanwhile, the expressions of miR-181d-5p, SPP1, p-p65, NLRP3, ASC, caspase-1, p20, and GSDMD-N in tissues and cells were assessed by RT-qPCR and immunoblotting. The relationship between miR-181d-5p and SPP1 in experimental inflammation was reported by dual luciferase assay. RESULTS XBJ could improve inflammation and pyroptosis of ALI by inhibiting contents of inflammatory cytokines, and levels of inflammation- and pyroptosis-related proteins. Mechanistically, XBJ could up-regulate miR-181d-5p and inhibit SPP1 in ALI. miR-181d-5p can target the regulation of SPP1. Depressing miR-181d-5p compensated for the ameliorative effect of XBJ on ALI, and overexpressing SPP1 suppressed the attenuating effect of XBJ on LPS-induced inflammation and pyroptosis. CONCLUSION XBJ can regulate the miR-181d-5p/SPP1 axis to improve inflammatory response and pyroptosis in ALI.
Collapse
Affiliation(s)
- XiaoYong Wu
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - RuoMei Xin
- Department of Nursing, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - YanZhong Zhang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - ChengRui Yang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - FangYuan Sun
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - YanLiang Wang
- Department of General Surgery, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China
| | - FengXian Zheng
- Department of Critical Care Medicine, Affiliated Danzhou People's Hospital of Hainan Medical University, Danzhou City, Hainan Province, China.
| |
Collapse
|
4
|
Tu W, Zheng H, Li L, Zhou C, Feng M, Chen L, Li D, Chen X, Hao B, Sun H, Cao Y, Gao Y. Secreted phosphoprotein 1 promotes angiogenesis of glioblastoma through upregulating PSMA expression via transcription factor HIF-1α. Acta Biochim Biophys Sin (Shanghai) 2022; 55:417-425. [PMID: 36305723 PMCID: PMC10160226 DOI: 10.3724/abbs.2022157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly vascularized malignant brain tumor. Our previous study showed that prostate-specific membrane antigen (PSMA) promotes angiogenesis of GBM. However, the specific mechanism underlying GBM-induced PSMA upregulation remains unclear. In this study, we demonstrate that the GBM-secreted cytokine phosphoprotein 1 (SPP1) can regulate the expression of PSMA in human umbilical vein endothelial cells (HUVECs). Our mechanistic study further reveals that SPP1 regulates the expression of PSMA through the transcription factor HIF1α. Moreover, SPP1 promotes HUVEC migration and tube formation. In addition, HIF1α knockdown reduces the expression of PSMA in HUVECs and blocks the ability of SPP1 to promote HUVEC migration and tube formation. We further confirm that SPP1 is abundantly expressed in GBM, is associated with poor prognosis, and has high clinical diagnostic value with considerable sensitivity and specificity. Collectively, our findings identify that the GBM-secreted cytokine SPP1 upregulates PSMA expression in endothelial cells via the transcription factor HIF1α, providing insight into the angiogenic process and promising candidates for targeted GBM therapy.
Collapse
|
5
|
He Y, Yu F, Tian Y, Hu Q, Wang B, Wang L, Hu Y, Tao Y, Chen X, Peng M. Single-Cell RNA Sequencing Unravels Distinct Tumor Microenvironment of Different Components of Lung Adenocarcinoma Featured as Mixed Ground-Glass Opacity. Front Immunol 2022; 13:903513. [PMID: 35874770 PMCID: PMC9299373 DOI: 10.3389/fimmu.2022.903513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Lung adenocarcinoma featured as mixed ground-glass opacity (mGGO) doubled its volume half of the time in comparison with that featured as pure ground-glass opacity (pGGO). The mechanisms underlying the heterogeneous appearance of mGGO remain elusive. In this study, we macro-dissected the solid (S) components and ground-glass (GG) components of mGGO and performed single-cell sequencing analyses of six paired components from three mGGO patients. A total of 19,391 single-cell profiles were taken into analysis, and the data of each patient were analyzed independently to obtain a common alteration. Cancer cells and macrophages were the dominant cell types in the S and GG components, respectively. Cancer cells in the S components, which showed relatively malignant phenotypes, were likely to originate from both the GG and S components and monitor the surrounding tumor microenvironment (TME) through an intricate cell interaction network. SPP1hi macrophages were enriched in the S components and showed increased activity of chemoattraction, while macrophages in the GG components displayed an active antimicrobial process with a higher stress-induced state. In addition, the CD47–SIRPA axis was demonstrated to be critical in the maintenance of the GG components. Taken together, our study unraveled the alterations of cell components and transcriptomic features between different components in mGGOs.
Collapse
Affiliation(s)
- Yu He
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yi Tian
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Qikang Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Bin Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yan Hu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yongguang Tao
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaofeng Chen
- Department of Anaesthesia, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Muyun Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Ouyang J, Hu Z, Tong J, Yang Y, Wang J, Chen X, Luo T, Yu S, Wang X, Huang S. Construction and evaluation of a nomogram for predicting survival in patients with lung cancer. Aging (Albany NY) 2022; 14:2775-2792. [PMID: 35321944 PMCID: PMC9004553 DOI: 10.18632/aging.203974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Lung cancer is a heterogeneous disease with a severe disease burden. Because the prognosis of patients with lung cancer varies, it is critical to identify effective biomarkers for prognosis prediction. METHODS A total of 2325 lung cancer patients were integrated into four independent sets (training set, validation set I, II and III) after removing batch effects in our study. We applied the microarray data algorithm to screen the differentially expressed genes in the training set. The most robust markers for prognosis were identified using the LASSO-Cox regression model, which was then used to create a Cox model and nomogram. RESULTS Through LASSO and multivariate Cox regression analysis, eight genes were identified as prognosis-associated hub genes, followed by the creation of prognosis-associated risk scores (PRS). The results of the Kaplan-Meier analysis in the three validation sets demonstrate the good predictive performance of PRS, with hazard ratios of 2.38 (95% confidence interval (CI), 1.61-3.53) in the validation set I, 1.35 (95% CI, 1.06-1.71) in the validation set II, and 2.71 (95% CI, 1.77-4.18) in the validation set III. Additionally, the PRS demonstrated superior survival prediction in subgroups by age, gender, p-stage, and histologic type (p < 0.0001). The complex model integrating PRS and clinical risk factors also have a good predictive performance for 3-year overall survival. CONCLUSIONS In this study, we developed a PRS signature to help predict the survival of lung cancer. By combining it with clinical risk factors, a nomogram was established to quantify the individual risk assessments.
Collapse
Affiliation(s)
- Jin Ouyang
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang 330006, PR China.,SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Zhijian Hu
- Laboratory Department, Jiujiang University Clinical Medical College, Jiujiang University Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Jianlin Tong
- Laboratory Department, Jiujiang University Clinical Medical College, Jiujiang University Hospital, Jiujiang, Jiangxi 332000, PR China
| | - Yong Yang
- SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Juan Wang
- SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Xi Chen
- SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China
| | - Ting Luo
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China
| | - Shiqun Yu
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China
| | - Xin Wang
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China
| | - Shaoxin Huang
- Laboratory of Precision Preventive Medicine, Medical School, Jiujiang University, Jiujiang, Jiangxi 332000, PR China.,SpecAlly Life Technology Co. Ltd., Wuhan, Hubei 430075, PR China.,School of Public Health, Qingdao University, Qingdao 266100, PR China
| |
Collapse
|
7
|
Zeng P, Zhang X, Xiang T, Ling Z, Lin C, Diao H. Secreted phosphoprotein 1 as a potential prognostic and immunotherapy biomarker in multiple human cancers. Bioengineered 2022; 13:3221-3239. [PMID: 35067176 PMCID: PMC8973783 DOI: 10.1080/21655979.2021.2020391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Ping Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xujun Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zongxin Ling
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenhong Lin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Zhao K, Ma Z, Zhang W. Comprehensive Analysis to Identify SPP1 as a Prognostic Biomarker in Cervical Cancer. Front Genet 2022; 12:732822. [PMID: 35058964 PMCID: PMC8764398 DOI: 10.3389/fgene.2021.732822] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background: SPP1, secreted phosphoprotein 1, is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family. Previous studies have proven SPP1 overexpressed in a variety of cancers and can be identified as a prognostic factor, while no study has explored the function and carcinogenic mechanism of SPP1 in cervical cancer. Methods: We aimed to demonstrate the relationship between SPP1 expression and pan-cancer using The Cancer Genome Atlas (TCGA) database. Next, we validated SPP1 expression of cervical cancer in the Gene Expression Omnibus (GEO) database, including GSE7803, GSE63514, and GSE9750. The receiver operating characteristic (ROC) curve was used to evaluate the feasibility of SPP1 as a differentiating factor by the area under curve (AUC) score. Cox regression and logistic regression were performed to evaluate factors associated with prognosis. The SPP1-binding protein network was built by the STRING tool. Enrichment analysis by the R package clusterProfiler was used to explore potential function of SPP1. The single-sample GSEA (ssGSEA) method from the R package GSVA and TIMER database were used to investigate the association between the immune infiltration level and SPP1 expression in cervical cancer. Results: Pan-cancer data analysis showed that SPP1 expression was higher in most cancer types, including cervical cancer, and we got the same result in the GEO database. The ROC curve suggested that SPP1 could be a potential diagnostic biomarker (AUC = 0.877). High SPP1 expression was associated with poorer overall survival (OS) (P = 0.032). Further enrichment and immune infiltration analysis revealed that high SPP1 expression was correlated with regulating the infiltration level of neutrophil cells and some immune cell types, including macrophage and DC. Conclusion: SPP1 expression was higher in cervical cancer tissues than in normal cervical epithelial tissues. It was significantly associated with poor prognosis and immune cell infiltration. Thus, SPP1 may become a promising prognostic biomarker for cervical cancer patients.
Collapse
Affiliation(s)
- Kaidi Zhao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhou Ma
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
9
|
Lao Y, Li T, Xie X, Chen K, Li M, Huang L. MiR-195-3p is a Novel Prognostic Biomarker Associated with Immune Infiltrates of Lung Adenocarcinoma. Int J Gen Med 2022; 15:191-203. [PMID: 35023957 PMCID: PMC8747729 DOI: 10.2147/ijgm.s350340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/22/2021] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNA-195-3p (miR-195-3p) plays an important role in some tumors, but its role in LUAD is unclear. This study explored the expression of miR-195-3p in LUAD and the relationship between the expression of miR-195-3p and the clinical and prognostic characteristics of LUAD patients. Methods MiR-195-3p expression and clinical information of LUAD patients were obtained from The Cancer Genome Atlas (TCGA). Kruskal–Wallis test, Wilcoxon signed rank test, logistic regression, and Cox regression were used to assess the relationship between the expression level of miR-195-3p and clinical features in LUAD tissues. Kaplan–Meier survival curves were used to analyze the effect of miR-195-3p expression levels on the prognosis of LUAD patients. Target genes of miR-195-3p were predicted by several software. GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes), and immune infiltration analysis were used to analyze the possible regulatory network of miR-195-3p. Results Compared with normal lung tissue, miR-195-3p is down expressed in LUAD tissue (P < 0.001). The low miR-195-3p expression in LUAD was significantly associated with N stage (P = 0.046), pathologic stage (P = 0.011), and gender (P = 0.010). Low miR-195-3p expression predicted a poorer overall survival (HR: 0.60; 95% CI: 0.45–0.81; P = 0.001) and disease-specific survival (HR: 0.55; 95% CI: 0.37–0.80; P = 0.002). The expression of miR-195-3p (HR: 0.488; 95% CI: 0.304–0.784; P = 0.003) was independently correlated with OS in LUAD patients. High expression of miR-195-3p genes, including ABCC2, AGMAT, ARNTL2, ATP6V0A4, CDC25A, CDK1, FAM111B, GJB2, GRIP1, HMGA2, HOXA9, KIF14, SYT2, and TFAP2A, were associated with poor OS in LUAD. GO and KEGG analysis suggested that miR-195-3p was related to the phagosome pathway. MiR-195-3p may promote the function of B cells, dendritic cells, eosinophils, immature dendritic cells, macrophages, Mast cells, NK cells, plasmacytoid dendritic cells, and follicular helper T cells. Conclusion Low miR-195-3p expression is significantly associated with poor survival in LUAD, which may be a promising prognostic biomarker for LUAD.
Collapse
Affiliation(s)
- Yi Lao
- The Fourth Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, 524002, People's Republic of China
| | - Taidong Li
- Department of Thoracic Surgery, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, 524002, People's Republic of China
| | - Xin Xie
- The Fourth Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, 524002, People's Republic of China
| | - Kangbiao Chen
- The Fourth Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, 524002, People's Republic of China
| | - Ming Li
- The Fourth Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, 524002, People's Republic of China
| | - Lu Huang
- The Fourth Department of Medical Oncology, Central Hospital of Guangdong Nongken, Zhanjiang Cancer Hospital, Zhanjiang, Guangdong, 524002, People's Republic of China
| |
Collapse
|
10
|
Luo X, Xu JG, Wang Z, Wang X, Zhu Q, Zhao J, Bian L. Bioinformatics Identification of Key Genes for the Development and Prognosis of Lung Adenocarcinoma. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2022; 59:469580221096259. [PMID: 35635202 PMCID: PMC9158403 DOI: 10.1177/00469580221096259] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective: Lung adenocarcinoma (LUAD) is a common malignant tumor with a poor prognosis. The present study aimed to screen the key genes involved in LUAD development and prognosis. Methods: The transcriptome data for 515 LUAD and 347 normal samples were downloaded from The Cancer Genome Atlas and Genotype Tissue Expression databases. The weighted gene co-expression network and differentially expressed genes were used to identify the central regulatory genes for the development of LUAD. Univariate Cox, LASSO, and multivariate Cox regression analyses were utilized to identify prognosis-related genes. Results: The top 10 central regulatory genes of LUAD included IL6, PECAM1, CDH5, VWF, THBS1, CAV1, TEK, HGF, SPP1, and ENG. Genes that have an impact on survival included PECAM1, HGF, SPP1, and ENG. The favorable prognosis genes included KDF1, ZNF691, DNASE2B, and ELAPOR1, while unfavorable prognosis genes included RPL22, ENO1, PCSK9, SNX7, and LCE5A. The areas under the receiver operating characteristic curves of the risk score model in the training and testing datasets were .78 and .758, respectively. Conclusion: Bioinformatics methods were used to identify genes involved in the development and prognosis of LUAD, which will provide a basis for further research on the treatment and prognosis of LUAD.
Collapse
Affiliation(s)
- Xuan Luo
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Guo Xu
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, China
| | - ZhiYuan Wang
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - XiaoFang Wang
- Department of Pathology, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - QianYing Zhu
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juan Zhao
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Li Bian
- 36657The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
11
|
Dong B, Wu C, Huang L, Qi Y. Macrophage-Related SPP1 as a Potential Biomarker for Early Lymph Node Metastasis in Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:739358. [PMID: 34646827 PMCID: PMC8502925 DOI: 10.3389/fcell.2021.739358] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lymph node metastasis is a major factor that affects prognosis in patients with lung adenocarcinoma (LUAD). In some cases, lymph node metastasis has already occurred when the primary tumors are still small (i.e., early T stages), however, relevant studies on early lymph node metastasis are limited, and effective biomarkers remain lacking. This study aimed to explore new molecular biomarker for early lymph node metastasis in LUAD using transcriptome sequencing and experimental validation. Here, we performed transcriptome sequencing on tissues from 16 matched patients with Stage-T1 LUAD (eight cases of lymph node metastasis and eight cases of non-metastasis), and verified the transcriptome profiles in TCGA, GSE68465, and GSE43580 cohorts. With the bioinformatics analysis, we identified a higher abundance of M0 macrophages in the metastatic group using the CIBERSORT algorithm and immunohistochemistry (IHC) analysis and the enrichment of the epithelial–mesenchymal transition (EMT) pathway was identified in patients with higher M0 infiltration levels. Subsequently, the EMT hallmark gene SPP1, encoding secreted phosphoprotein 1 (SPP1), was identified to be significantly correlated with macrophage infiltration and M2 polarization, and was determined to be a key risk indicator for early lymph node metastasis. Notably, SPP1 in the blood, as detected by enzyme-linked immunosorbent assay (ELISA) showed a superior predictive capability for early lymph node metastasis [area under the curve (AUC) = 0.74]. Furthermore, a long non-coding RNA (lncRNA, AC037441), negatively correlated with SPP1 and macrophage infiltration, had also been identified and validated to be involved in the regulation of early lymph node metastasis. In conclusion, we revealed the potential role of macrophages in lymph node metastasis and identified the macrophage-related gene SPP1 as a potential biomarker for early lymph node metastasis in LUAD.
Collapse
Affiliation(s)
- Bo Dong
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunli Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Luo X, Feng L, Xu W, Bai X, Wu M. Weighted gene co-expression network analysis of hub genes in lung adenocarcinoma. Evol Bioinform Online 2021; 17:11769343211009898. [PMID: 33911849 PMCID: PMC8047936 DOI: 10.1177/11769343211009898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a tumor with high incidence. This study aimed to identify the central genes of LUAD. LUAD were analyzed by weighted gene co-expression network (WGCNA), and differentially expressed genes (DEGs) were identified. Samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEx) databases and included 515 LUAD samples and 347 normal samples. The WGCNA algorithm generated a total of 10 modules. The top 2 modules (MEturquoise and MEblue) with the highest correlation to LUAD were selected. Ten Hub genes (IL6, CDH1, PECAM1, SPP1, THBS1, HGF, SNCA, CDH5, CAV1, and DLC1) were screened in the intersecting genes of DEGs and WGCNA (MEturquoise and MEblue). Only SPP1 was correlated with LUAD poor survival, indicating that SPP1 may be a key Hub gene for LUAD. The competing endogenous RNA (ceRNA) network was constructed to analyze the regulatory relationship of Hub genes, and SPP1 may be directly regulated by 4 microRNAs (miRNAs) and indirectly regulated by 49 long noncoding RNAs (lncRNAs).
Collapse
Affiliation(s)
- Xuan Luo
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - Lei Feng
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - WenBo Xu
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - XueJing Bai
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| | - MengNa Wu
- Department of Laboratory, People's Hospital of Yuxi City, Yuxi City, Yunnan Province, P.R. China
| |
Collapse
|
13
|
He Y, Liu R, Yang M, Bi W, Zhou L, Zhang S, Jin J, Liang X, Zhang P. Identification of VWF as a Novel Biomarker in Lung Adenocarcinoma by Comprehensive Analysis. Front Oncol 2021; 11:639600. [PMID: 33968738 PMCID: PMC8100660 DOI: 10.3389/fonc.2021.639600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most malignant tumors with high morbidity and mortality worldwide due to the lack of reliable methods for early diagnosis and effective treatment. It’s imperative to study the mechanism of its development and explore new biomarkers for early detection of LUAD. In this study, the Gene Expression Omnibus (GEO) dataset GSE43458 and The Cancer Genome Atlas (TCGA) were used to explore the differential co-expressed genes between LUAD and normal samples. Three hundred sixity-six co-expressed genes were identified by differential gene expression analysis and Weighted Gene Co-expression Network Analysis (WGCNA) method. Those genes were mainly enriched in ameboidal-type cell migration (biological process), collagen-containing extracellular matrix (cell component), and extracellular matrix structure constituent (molecular function). The protein-protein network (PPI) was constructed and 10 hub genes were identified, including IL6, VWF, CDH5, PECAM1, EDN1, BDNF, CAV1, SPP1, TEK, and SELE. The expression level of hub genes was validated in the GEPIA database, compared with normal tissues, VWF is lowly expressed and SPP1 is upregulated in LUAD tissues. The survival analysis showed increased expression of SPP1 indicated unfavorable prognosis whereas high expression of VWF suggested favorable prognosis in LUAD (p < 0.05). Based on the immune infiltration analysis, the relationship between SPP1 and VWF expression and macrophage, neutrophil, and dendritic cell infiltration was weak in LUAD. Quantitative real-time PCR (qRT-PCR) and western blotting were used to validate the expression of VWF and SPP1 in normal human bronchial epithelial (HBE) cell and three LUAD cell lines, H1299, H1975, and A549. Immunohistochemistry (IHC) was further performed to detect the expression of VWF in 10 cases LUAD samples and matched normal tissues. In summary, the data suggest that VWF is a potential novel biomarker for prognosis of LUAD.
Collapse
Affiliation(s)
- Yi He
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ruijie Liu
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mei Yang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wu Bi
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liuyin Zhou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Sai Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Jin
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Pengfei Zhang
- NHC Key Laboratory of Cancer Proteomics, Department of Oncology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Wang XJ, Gao J, Wang Z, Yu Q. Identification of a Potentially Functional microRNA-mRNA Regulatory Network in Lung Adenocarcinoma Using a Bioinformatics Analysis. Front Cell Dev Biol 2021; 9:641840. [PMID: 33681226 PMCID: PMC7930498 DOI: 10.3389/fcell.2021.641840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a common lung cancer with a high mortality, for which microRNAs (miRNAs) play a vital role in its regulation. Multiple messenger RNAs (mRNAs) may be regulated by miRNAs, involved in LUAD tumorigenesis and progression. However, the miRNA-mRNA regulatory network involved in LUAD has not been fully elucidated. METHODS Differentially expressed miRNAs and mRNA were derived from the Cancer Genome Atlas (TCGA) dataset in tissue samples and from our microarray data in plasma (GSE151963). Then, common differentially expressed (Co-DE) miRNAs were obtained through intersected analyses between the above two datasets. An overlap was applied to confirm the Co-DEmRNAs identified both in targeted mRNAs and DEmRNAs in TCGA. A miRNA-mRNA regulatory network was constructed using Cytoscape. The top five miRNA were identified as hub miRNA by degrees in the network. The functions and signaling pathways associated with the hub miRNA-targeted genes were revealed through Gene Ontology (GO) analysis and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The key mRNAs in the protein-protein interaction (PPI) network were identified using the STRING database and CytoHubba. Survival analyses were performed using Gene Expression Profiling Interactive Analysis (GEPIA). RESULTS The miRNA-mRNA regulatory network consists of 19 Co-DEmiRNAs and 760 Co-DEmRNAs. The five miRNAs (miR-539-5p, miR-656-3p, miR-2110, let-7b-5p, and miR-92b-3p) in the network were identified as hub miRNAs by degrees (>100). The 677 Co-DEmRNAs were targeted mRNAs from the five hub miRNAs, showing the roles in the functional analyses of the GO analysis and KEGG pathways (inclusion criteria: 836 and 48, respectively). The PPI network and Cytoscape analyses revealed that the top ten key mRNAs were NOTCH1, MMP2, IGF1, KDR, SPP1, FLT1, HGF, TEK, ANGPT1, and PDGFB. SPP1 and HGF emerged as hub genes through survival analysis. A high SPP1 expression indicated a poor survival, whereas HGF positively associated with survival outcomes in LUAD. CONCLUSION This study investigated a miRNA-mRNA regulatory network associated with LUAD, exploring the hub miRNAs and potential functions of mRNA in the network. These findings contribute to identify new prognostic markers and therapeutic targets for LUAD patients in clinical settings.
Collapse
Affiliation(s)
- Xiao-Jun Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Jing Gao
- Department of Respiratory Medicine, Gansu Provincial Hospital, Lanzhou, China
- Respiratory Medicine Unit, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Pulmonary Medicine, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Zhuo Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Pathology Medicine, Gansu Provincial Hospital, Lanzhou, China
| | - Qin Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
- Department of Respiratory Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
15
|
Yuan M, Yu C, Chen X, Wu Y. Investigation on Potential Correlation Between Small Nuclear Ribonucleoprotein Polypeptide A and Lung Cancer. Front Genet 2021; 11:610704. [PMID: 33552128 PMCID: PMC7859448 DOI: 10.3389/fgene.2020.610704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/29/2020] [Indexed: 12/25/2022] Open
Abstract
SNRPA (small nuclear ribonucleoprotein polypeptide A) gene is essential for the pre-mRNA splicing process. Using the available datasets of TCGA or GEO, we aimed at exploring the potential association between the SNRPA gene and lung cancer by several online tools (such as GEIPA2, MEXPRESS, Oncomine) and bioinformatics analysis software (R or GSEA). SNRPA was highly expressed in the tissues of lung adenocarcinoma (LUAD) and lung squamous cell carcinoma tissue (LUSC), compared with control tissues. The high SNRPA expression was associated with a poor survival prognosis of LUAD cases, while the genetic alteration within SNRPA was linked to the overall survival prognosis of LUSC cases. There was a potential correlation between promoter methylation and the expression of SNRPA for LUAD. Compared with normal tissues, we observed a higher phosphorylation level at the S115 site of SNRPA protein (NP_004587.1) (p = 0.002) in the primary LUAD tissues. The potential ATR kinase of the S115 site was predicted. Besides, SNRPA expression in lung cancer was negatively correlated with the infiltration level of M2 macrophage but positively correlated with that of Follicular B helper T cells, in both LUAD and LUSC. The enrichment analysis of SNRPA-correlated genes showed that cell cycle and ubiquitin mechanism-related issues were mainly observed for LUAD; however, RNA splicing-related cellular issues were mainly for LUSC. In summary, the SNRPA gene was identified as a potential prognosis biomarker of lung cancer, especially lung adenocarcinoma, which sheds new light on the association between the spliceosomal complex component and tumorigenesis.
Collapse
Affiliation(s)
- Maoxi Yuan
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Chunmei Yu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| | - Xin Chen
- Department of Thoracic Surgery, The People's Hospital of Feixian County, Linyi, China
| | - Yubing Wu
- Department of Thoracic Surgery, Linyi Central Hospital, Linyi, China
| |
Collapse
|
16
|
Key microRNAs and hub genes associated with poor prognosis in lung adenocarcinoma. Aging (Albany NY) 2021; 13:3742-3762. [PMID: 33461176 PMCID: PMC7906143 DOI: 10.18632/aging.202337] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022]
Abstract
In the study, we obtained 36 pairs of lung adenocarcinoma (LUAD) tissues and adjacent non-tumorous tissues. Then, we chose a specific hub-target gene of miRNA and used qRT-PCR to evaluate the expression of PECAM1. We found that the expression level of PECAM1 mRNA in LUAD was significantly lower than that in adjacent nontumor tissues (P<0.0001). Univariate and multivariate analyses were conducted on 481 LUAD patients from The Cancer Genome Atlas (TCGA) according to the Cox proportional hazard regression model to evaluate the impact of PECAM1 expression and other clinicopathological factors on survival. The results showed that the low expression of PECAM1 was an important independent predictor of poor overall survival (HR, 0.704; 95% CI, 0.518-0.957; P = 0.025). Based on the Tumor Immune Estimation Resource (TIMER) database, the relationship between PECAM1 expression and B cell, CD8+ T cell, CD4+ T cell, macrophage, neutrophil, and dendritic cell infiltration was weak in LUAD (P<0.01). In particular, a more significant positive correlation between PECAM1 expression and HLA-complex members, CD1C, NRP1, and ITGAX expression in dendritic cell was detected in LUAD. The mechanism which PECAM1 involved in the development of LUAD may be closely related to changes in the immune microenvironment.
Collapse
|
17
|
Zhuang G, Zeng Y, Tang Q, He Q, Luo G. Identifying M1 Macrophage-Related Genes Through a Co-expression Network to Construct a Four-Gene Risk-Scoring Model for Predicting Thyroid Cancer Prognosis. Front Genet 2020; 11:591079. [PMID: 33193731 PMCID: PMC7658400 DOI: 10.3389/fgene.2020.591079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Macrophages are key innate immune cells in the tumor microenvironment that regulate primary tumor growth, vascularization, metastatic spread and response to therapies. Macrophages can polarize into two different states (M1 and M2) with distinct phenotypes and functions. To investigate the known tumoricidal effects of M1 macrophages, we obtained RNA expression profiles and clinical data from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA). The proportions of immune cells in tumor samples were assessed using CIBERSORT, and weighted gene co-expression network analysis (WGCNA) was used to identify M1 macrophage-related modules. Univariate Cox analysis and LASSO-Cox regression analysis were performed, and four genes (SPP1, DHRS3, SLC11A1, and CFB) with significant differential expression were selected through GEPIA. These four genes can be considered hub genes. The four-gene risk-scoring model may be an independent prognostic factor for THCA patients. The validation cohort and the entire cohort confirmed the results. Univariate and multivariate Cox analysis was performed to identify independent prognostic factors for THCA. Finally, a prognostic nomogram was built based on the entire cohort, and the nomogram combining the risk score and clinical prognostic factors was superior to the nomogram with individual clinical prognostic factors in predicting overall survival. Time-dependent ROC curves and DCA confirmed that the combined nomogram is useful. Gene set enrichment analysis (GSEA) was used to elucidate the potential molecular functions of the high-risk group. Our study identified four genes associated with M1 macrophages and established a prognostic nomogram that predicts overall survival for patients with THCA, which may help determine clinical treatment options for different patients.
Collapse
Affiliation(s)
- Gaojian Zhuang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Yu Zeng
- Department of Thyroid and Neck Tumor, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Qun Tang
- Department of Pathology, Hunan University of Chinese Medicine, Changsha, China
| | - Qian He
- Department of Neurosurgery, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guoqing Luo
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| |
Collapse
|