1
|
Coscujuela Tarrero L, Famà V, D'Andrea G, Maestri S, de Polo A, Biffo S, Furlan M, Pelizzola M. Nanodynamo quantifies subcellular RNA dynamics revealing extensive coupling between steps of the RNA life cycle. Nat Commun 2024; 15:7725. [PMID: 39231948 PMCID: PMC11375098 DOI: 10.1038/s41467-024-51917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
The coordinated action of transcriptional and post-transcriptional machineries shapes gene expression programs at steady state and determines their concerted response to perturbations. We have developed Nanodynamo, an experimental and computational workflow for quantifying the kinetic rates of nuclear and cytoplasmic steps of the RNA life cycle. Nanodynamo is based on mathematical modelling following sequencing of native RNA from cellular fractions and polysomes. We have applied this workflow to triple-negative breast cancer cells, revealing widespread post-transcriptional RNA processing that is mutually exclusive with its co-transcriptional counterpart. We used Nanodynamo to unravel the coupling between transcription, processing, export, decay and translation machineries. We have identified a number of coupling interactions within and between the nucleus and cytoplasm that largely contribute to coordinating how cells respond to perturbations that affect gene expression programs. Nanodynamo will be instrumental in unravelling the determinants and regulatory processes involved in the coordination of gene expression responses.
Collapse
Affiliation(s)
| | - Valeria Famà
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
- Department of Oncology and Emato-Oncology, University of Milan, Milan, Italy
| | - Giacomo D'Andrea
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Simone Maestri
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Anna de Polo
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy
| | - Stefano Biffo
- Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milano, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), Milan, Italy.
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy.
| |
Collapse
|
2
|
Brancato V, Brentari I, Coscujuela Tarrero L, Furlan M, Nicassio F, Denti MA. News from around the RNA world: new avenues in RNA biology, biotechnology and therapeutics from the 2022 SIBBM meeting. Biol Open 2022; 11:bio059597. [PMID: 36239357 PMCID: PMC9581514 DOI: 10.1242/bio.059597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Since the formalization of the Central Dogma of molecular biology, the relevance of RNA in modulating the flow of information from DNA to proteins has been clear. More recently, the discovery of a vast set of non-coding transcripts involved in crucial aspects of cellular biology has renewed the enthusiasm of the RNA community. Moreover, the remarkable impact of RNA therapies in facing the COVID19 pandemics has bolstered interest in the translational opportunities provided by this incredible molecule. For all these reasons, the Italian Society of Biophysics and Molecular Biology (SIBBM) decided to dedicate its 17th yearly meeting, held in June 2022 in Rome, to the many fascinating aspects of RNA biology. More than thirty national and international speakers covered the properties, modes of action and applications of RNA, from its role in the control of development and cell differentiation to its involvement in disease. Here, we summarize the scientific content of the conference, highlighting the take-home message of each presentation, and we stress the directions the community is currently exploring to push forward our comprehension of the RNA World 3.0.
Collapse
Affiliation(s)
- Virginia Brancato
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Ilaria Brentari
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| | | | - Mattia Furlan
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Francesco Nicassio
- Center for Genomic Science IIT@SEMM, Italian Institute of Technology, Milan 20139, Italy
| | - Michela A. Denti
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Trento 38123, Italy
| |
Collapse
|
3
|
Li JR, Tang M, Li Y, Amos CI, Cheng C. Genetic variants associated mRNA stability in lung. BMC Genomics 2022; 23:196. [PMID: 35272635 PMCID: PMC8915503 DOI: 10.1186/s12864-022-08405-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background Expression quantitative trait loci (eQTLs) analyses have been widely used to identify genetic variants associated with gene expression levels to understand what molecular mechanisms underlie genetic traits. The resultant eQTLs might affect the expression of associated genes through transcriptional or post-transcriptional regulation. In this study, we attempt to distinguish these two types of regulation by identifying genetic variants associated with mRNA stability of genes (stQTLs). Results Here, we presented a computational framework that takes advantage of recently developed methods to infer the mRNA stability of genes based on RNA-seq data and performed association analysis to identify stQTLs. Using the Genotype-Tissue Expression (GTEx) lung RNA-Seq data, we identified a total of 142,801 stQTLs for 3942 genes and 186,132 eQTLs for 4751 genes from 15,122,700 genetic variants for 13,476 genes on the autosomes, respectively. Interestingly, our results indicated that stQTLs were enriched in the CDS and 3’UTR regions, while eQTLs are enriched in the CDS, 3’UTR, 5’UTR, and upstream regions. We also found that stQTLs are more likely than eQTLs to overlap with RNA binding protein (RBP) and microRNA (miRNA) binding sites. Our analyses demonstrate that simultaneous identification of stQTLs and eQTLs can provide more mechanistic insight on the association between genetic variants and gene expression levels. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08405-y.
Collapse
Affiliation(s)
- Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Mabel Tang
- Department of BioSciences, Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | - Yafang Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA. .,Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA. .,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
4
|
Furlan M, de Pretis S, Pelizzola M. Dynamics of transcriptional and post-transcriptional regulation. Brief Bioinform 2021; 22:bbaa389. [PMID: 33348360 PMCID: PMC8294512 DOI: 10.1093/bib/bbaa389] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Despite gene expression programs being notoriously complex, RNA abundance is usually assumed as a proxy for transcriptional activity. Recently developed approaches, able to disentangle transcriptional and post-transcriptional regulatory processes, have revealed a more complex scenario. It is now possible to work out how synthesis, processing and degradation kinetic rates collectively determine the abundance of each gene's RNA. It has become clear that the same transcriptional output can correspond to different combinations of the kinetic rates. This underscores the fact that markedly different modes of gene expression regulation exist, each with profound effects on a gene's ability to modulate its own expression. This review describes the development of the experimental and computational approaches, including RNA metabolic labeling and mathematical modeling, that have been disclosing the mechanisms underlying complex transcriptional programs. Current limitations and future perspectives in the field are also discussed.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
5
|
Furlan M, Galeota E, Gaudio ND, Dassi E, Caselle M, de Pretis S, Pelizzola M. Genome-wide dynamics of RNA synthesis, processing, and degradation without RNA metabolic labeling. Genome Res 2020; 30:1492-1507. [PMID: 32978246 PMCID: PMC7605262 DOI: 10.1101/gr.260984.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The quantification of the kinetic rates of RNA synthesis, processing, and degradation are largely based on the integrative analysis of total and nascent transcription, the latter being quantified through RNA metabolic labeling. We developed INSPEcT−, a computational method based on the mathematical modeling of premature and mature RNA expression that is able to quantify kinetic rates from steady-state or time course total RNA-seq data without requiring any information on nascent transcripts. Our approach outperforms available solutions, closely recapitulates the kinetic rates obtained through RNA metabolic labeling, improves the ability to detect changes in transcript half-lives, reduces the cost and complexity of the experiments, and can be adopted to study experimental conditions in which nascent transcription cannot be readily profiled. Finally, we applied INSPEcT− to the characterization of post-transcriptional regulation landscapes in dozens of physiological and disease conditions. This approach was included in the INSPEcT Bioconductor package, which can now unveil RNA dynamics from steady-state or time course data, with or without the profiling of nascent RNA.
Collapse
Affiliation(s)
- Mattia Furlan
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy.,Physics Department and INFN, University of Turin, 10125 Turin, Italy
| | - Eugenia Galeota
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Nunzio Del Gaudio
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Erik Dassi
- Centre for Integrative Biology, University of Trento, 38123 Trento, Italy
| | - Michele Caselle
- Physics Department and INFN, University of Turin, 10125 Turin, Italy
| | - Stefano de Pretis
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| | - Mattia Pelizzola
- Center for Genomic Science, Fondazione Istituto Italiano di Tecnologia, 20139 Milan, Italy
| |
Collapse
|