1
|
Song H, Jiang H, Hu W, Hai Y, Cai Y, Li H, Liao Y, Huang Y, Lv X, Zhang Y, Zhang J, Huang Y, Liang X, Huang H, Lin X, Wang Y, Yi X. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. SCIENCE ADVANCES 2024; 10:eadl3511. [PMID: 38748808 PMCID: PMC11095500 DOI: 10.1126/sciadv.adl3511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.
Collapse
Affiliation(s)
- Haonan Song
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Haoyuan Jiang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Weichu Hu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yan Hai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yihuan Cai
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hu Li
- The First Affiliated Hospital, Jinan University, Guangzhou 510280, China
| | - Yuru Liao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yi Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xiaogang Lv
- Department of Gynecologic Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou 510030, China
| | - Yefei Zhang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Jiping Zhang
- Department of Gynecology, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Yan Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaomei Liang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hao Huang
- Department of Gynecology, The Sixth Affiliated Hospital, South China University of Technology, Foshan 528200, China
| | - Xinhua Lin
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai, Shanghai 200438, China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou 510280, China
| |
Collapse
|
2
|
Minhas S, Kashif M, Nisar H, Idrees M, Ansari F. Whole-genome analysis and evolutionary characterization of cervical and oral human papillomavirus 16. Exp Biol Med (Maywood) 2023; 248:2332-2340. [PMID: 38196081 PMCID: PMC10903243 DOI: 10.1177/15353702231211861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/24/2023] [Indexed: 01/11/2024] Open
Abstract
High-throughput genome-wide sequencing has revealed high genomic variability of HPV16 in different geographic regions which is the most predominant genotype in human papillomavirus (HPV)-associated malignancies. Analysis of the HPV16 by whole-genome sequence (WGS) is an advanced method for the identification of mutations in the genome. There is limited information about HPV16 diversity in Pakistan, especially at the genomic level. Till now, WGS for HPV16 has not been previously reported in Pakistan. The current study has sequenced three HPV16 viral genomes, from two cervical and one oral cavity positive sample of women presented with general gynecological problems without any evidence of precancerous or cancerous lesions using an ion ampliseq customized panel. Sequencing analysis detected 38 variations, including single-nucleotide polymorphisms (SNPs) and two Indels, across three samples with the highest number of SNPs present in E1, E2, and L2, respectively. A total of 20 non-synonymous and 11 synonymous mutations with amino acid substitutions (T1421C, G1515A, T2223C, T1389C, G1483A, and T2191C) were identified. The phylogenetic analysis revealed the genomes of HPV16 are closely associated with those reported from Thailand and the United States. These are the first HPV16 WGS from Pakistan. However, more research is needed with a large sample size from diversified areas to assess the carcinogenic consequences and impact of HPV vaccinations.
Collapse
Affiliation(s)
- Sadia Minhas
- Department of Microbiology, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
- Department of Oral Pathology, Akhtar Saeed Medical & Dental College Lahore, Lahore 54000, Pakistan
| | - Muhammad Kashif
- Department of Oral Pathology, Bakhtawar Amin Medical & Dental College, Multan 60000, Pakistan
| | - Haseeb Nisar
- Department of Life Sciences, University of Management and Technology, Lahore 54000, Pakistan
| | - Muhammad Idrees
- Center of Excellence in Molecular Biology, The University of Punjab, Lahore 54000, Pakistan
| | - Farheen Ansari
- Department of Microbiology, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| |
Collapse
|
3
|
Pan C, Hu T, Liu P, Ma D, Cao S, Shang Q, Zhang L, Chen Q, Fang Q, Wang J. BM-MSCs display altered gene expression profiles in B-cell acute lymphoblastic leukemia niches and exert pro-proliferative effects via overexpression of IFI6. J Transl Med 2023; 21:593. [PMID: 37670388 PMCID: PMC10478283 DOI: 10.1186/s12967-023-04464-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) is a supportive environment responsible for promoting the growth and proliferation of tumor cells. Current studies have revealed that the bone marrow mesenchymal stem cells (BM-MSCs), a type of crucial stromal cells in the TME, can promote the malignant progression of tumors. However, in the adult B-cell acute lymphoblastic leukemia (B-ALL) microenvironment, it is still uncertain what changes in BM-MSCs are induced by leukemia cells. METHODS In this study, we mimicked the leukemia microenvironment by constructing a BM-MSC-leukemia cell co-culture system. In vitro cell experiments, in vivo mouse model experiments, lentiviral transfection and transcriptome sequencing analysis were used to investigate the possible change of BM-MSCs in the leukemia niche and the potential factors in BM-MSCs that promote the progression of leukemia. RESULTS In the leukemia niche, the leukemia cells reduced the MSCs' capacity to differentiate towards adipogenic and osteogenic subtypes, which also promoted the senescence and cell cycle arrest of the MSCs. Meanwhile, compared to the mono-cultured MSCs, the gene expression profiles of MSCs in the leukemia niche changed significantly. These differential genes were enriched for cell cycle, cell differentiation, DNA replication, as well as some tumor-promoting biofunctions including protein phosphorylation, cell migration and angiogenesis. Further, interferon alpha-inducible protein 6 (IFI6), as a gene activated by interferon, was highly expressed in leukemia niche MSCs. The leukemia cell multiplication was facilitated evidently by IFI6 both in vitro and in vivo. Mechanistically, IFI6 might promote leukemia cell proliferation by stimulating SDF-1/CXCR4 axis, which leads to the initiation of downstream ERK signaling pathway. As suggested by further RNA sequencing analysis, the high IFI6 level in MSCs somewhat influenced the gene expression profile and biological functions of leukemia cells. CONCLUSIONS BM-MSCs in the leukemia niche have varying degrees of changes in biological characteristics and gene expression profiles. Overexpression of IFI6 in BM-MSCs could be a key factor in promoting the proliferation of B-ALL cells, and this effect might be exerted through the SDF-1/CXCR4/ERK signal stimulation. Targeting IFI6 or related signaling pathways might be an important measure to reduce the leukemia cell proliferation.
Collapse
Affiliation(s)
- Chengyun Pan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Tianzhen Hu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China
| | - Shuyun Cao
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qin Shang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
| | - Luxin Zhang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qingzhen Chen
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
- Hematological Institute of Guizhou Province, Guizhou, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, 28 Guiyi St., Yunyan District, Guiyang, 550004, Guizhou, China.
- School of Basic Medical Sciences, Guizhou Medical University, Guizhou, China.
- Hematological Institute of Guizhou Province, Guizhou, China.
- Guizhou Province Hematopoietic Stem Cell Transplantation Centre and Key Laboratory of Hematological Disease Diagnostic and Treatment Centre, Guizhou, China.
| |
Collapse
|
4
|
Li Y, Wang C, Ma A, Rani AQ, Luo M, Li J, Liu X, Ma Q. Identification of HPV oncogene and host cell differentiation associated cellular heterogeneity in cervical cancer via single-cell transcriptomic analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552878. [PMID: 37645794 PMCID: PMC10462038 DOI: 10.1101/2023.08.10.552878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Human Papillomaviruses (HPVs) are associated with around 5-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes - E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Abdul Qawee Rani
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Mingjue Luo
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Jenny Li
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Xuefeng Liu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- The Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
5
|
Li Y, Wang C, Ma A, Rani AQ, Luo M, Li J, Liu X, Ma Q. Identification of HPV oncogene and host cell differentiation associated cellular heterogeneity in cervical cancer via single-cell transcriptomic analysis. J Med Virol 2023; 95:e29060. [PMID: 37638381 DOI: 10.1002/jmv.29060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Human Papillomaviruses (HPVs) are associated with around 5%-10% of human cancer, notably nearly 99% of cervical cancer. The mechanisms HPV interacts with stratified epithelium (differentiated layers) during the viral life cycle, and oncogenesis remain unclear. In this study, we used single-cell transcriptome analysis to study viral gene and host cell differentiation-associated heterogeneity of HPV-positive cervical cancer tissue. We examined the HPV16 genes-E1, E6, and E7, and found they expressed differently across nine epithelial clusters. We found that three epithelial clusters had the highest proportion of HPV-positive cells (33.6%, 37.5%, and 32.4%, respectively), while two exhibited the lowest proportions (7.21% and 5.63%, respectively). Notably, the cluster with the most HPV-positive cells deviated significantly from normal epithelial layer markers, exhibiting functional heterogeneity and altered epithelial structuring, indicating that significant molecular heterogeneity existed in cancer tissues and that these cells exhibited unique/different gene signatures compared with normal epithelial cells. These HPV-positive cells, compared to HPV-negative, showed different gene expressions related to the extracellular matrix, cell adhesion, proliferation, and apoptosis. Further, the viral oncogenes E6 and E7 appeared to modify epithelial function via distinct pathways, thus contributing to cervical cancer progression. We investigated the HPV and host transcripts from a novel viewpoint focusing on layer heterogeneity. Our results indicated varied HPV expression across epithelial clusters and epithelial heterogeneity associated with viral oncogenes, contributing biological insights to this critical field of study.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, USA
| | - Abdul Qawee Rani
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mingjue Luo
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Jenny Li
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Xuefeng Liu
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- The Departments of Pathology, Urology, and Radiation Oncology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
6
|
Hua C, Liang Q, Chen S, Zhu J, Tang Y, Chen X, Song Y, van der Veen S, Cheng H. Human umbilical cord mesenchymal stem cell treatment alleviates symptoms in an atopic dermatitis-like mouse model. Stem Cell Res Ther 2023; 14:147. [PMID: 37248497 DOI: 10.1186/s13287-023-03365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Atopic dermatitis (AD) is one of the most common immune and inflammatory skin disorders, leading to insufferable itching and skin abnormalities that seriously affect life quality of patients. There are still huge unmet needs for long-term and effective disease control, despite currently available therapies. Evidenced by some preclinical and clinical studies of AD treatment with stem cells, stem cell treatment could significantly and effectively ameliorate AD symptoms. OBJECTIVES To elucidate underlying mechanisms of how stem cells therapy alleviates AD-like symptoms. METHODS An AD-like mouse model was constructed and treated with mesenchymal stem cells (MSCs) subcutaneously or subcutaneously combined with intravenously. The differentially expressed genes were sorted out from RNA sequencing results of dorsal skin and blood. RESULTS Two injection routes of MSCs could alleviate AD-like symptoms and pathologic changes of the skin and immune organs. RNA sequencing of dorsal skin sections and blood provided gene expression signatures for amelioration of skin defects, inflammatory and immune modulation by MSCs, as well as common AD molecular markers for the skin and blood, which may benefit for clinical diagnosis. IL-1β and its signaling pathway were specifically found to be associated with the development of AD-like dermatitis lesions. MSC treatment effectively inhibited the JAK-STAT pathway and receptors of IL-4, IL-13, IL-17, and IgE. CONCLUSIONS MSC therapy could regulate abnormal immune and inflammatory status in AD. Mechanistic exploration will contribute to the development of personalized AD treatment based on MSCs.
Collapse
Affiliation(s)
- Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qichang Liang
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Siji Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Zhu
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yi Tang
- Department of Dermatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xianzhen Chen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yinjing Song
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Stijn van der Veen
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Department of Microbiology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
7
|
Human Papillomavirus Type 16 Early Protein E7 Activates Autophagy through Inhibition of Dual-Specificity Phosphatase 5. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1863098. [PMID: 35368866 PMCID: PMC8966754 DOI: 10.1155/2022/1863098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022]
Abstract
Consistent high-risk human papillomavirus (HPV) infection leads to various malignant cancers. Autophagy can promote cancer progression by helping cancer cells survive under stress or induce oncogenic effects when mutations or abnormalities occur. Mitogen activated protein kinases (MAPKs) can transduce various external or intrinsic stimuli into cellular responses, including autophagy, and dual-specificity phosphates (DUSPs) contribute to the direct regulation of MAPK activities. Previously, we showed that expression of DUSP5 was repressed in HPV16 E7-expressing normal human epidermal keratinocytes (NHEKs). Here we show that clinical HPV16 E7-positive precancerous and cancerous tissues also demonstrate low DUSP5 levels compared with control tissues, indicating that the inverse correlation between HPV16 E7 and DUSP5 is clinically relevant. We furthermore investigated the autophagy response in both DUSP5-deficient and HPV16 E7-expressing NHEKs. Confocal microscopy and Western analysis showed induction of LC3-II levels, autophagosome formation and autophagy fluxes in DUSP5-deficient NHEKs. Furthermore, Western analysis demonstrated specific induction of phosphorylated ERK in DUSP5-deficient and HPV16 E7-expressing NHEKs, indicating that HPV16 E7-mediated repression of DUSP5 results in induced MAPK/ERK signaling. Finally, phosphorylated mTOR and ULK (S757) were reduced in DUSP5-deficient NHEKs, while phosphorylated ULK (S555) and AMPK were increased, thereby inducing canonical autophagy through the mTOR and AMPK pathways. In conclusion, our results demonstrate that HPV16 E7 expression reduces DUSP5 levels, which in turn results in active MAPK/ERK signaling and induction of canonical autophagy through mTOR and MAPK regulation. Given its demonstrated inverse correlation with clinical cancerous tissues, DUSP5 may serve as a potential therapeutic target for cervical cancer.
Collapse
|
8
|
Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, Esparza-Ibarra EL, Gallegos-Flores PI, Ayala-Luján JL, Godina-González S, Salinas E, Mendoza-Almanza G. Understanding Cervical Cancer through Proteomics. Cells 2021; 10:1854. [PMID: 34440623 PMCID: PMC8391734 DOI: 10.3390/cells10081854] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
Cancer is one of the leading public health issues worldwide, and the number of cancer patients increases every day. Particularly, cervical cancer (CC) is still the second leading cause of cancer death in women from developing countries. Thus, it is essential to deepen our knowledge about the molecular pathogenesis of CC and propose new therapeutic targets and new methods to diagnose this disease in its early stages. Differential expression analysis using high-throughput techniques applied to biological samples allows determining the physiological state of normal cells and the changes produced by cancer development. The cluster of differential molecular profiles in the genome, the transcriptome, or the proteome is analyzed in the disease, and it is called the molecular signature of cancer. Proteomic analysis of biological samples of patients with different grades of cervical intraepithelial neoplasia (CIN) and CC has served to elucidate the pathways involved in the development and progression of cancer and identify cervical proteins associated with CC. However, several cervical carcinogenesis mechanisms are still unclear. Detecting pathologies in their earliest stages can significantly improve a patient's survival rate, prognosis, and recurrence. The present review is an update on the proteomic study of CC.
Collapse
Affiliation(s)
- Fátima Martínez-Rodríguez
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | | | - Brenda Mendoza-Almanza
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Edgar L. Esparza-Ibarra
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Perla I. Gallegos-Flores
- Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98068, Mexico; (B.M.-A.); (E.L.E.-I.); (P.I.G.-F.)
| | - Jorge L. Ayala-Luján
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Susana Godina-González
- Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico; (J.L.A.-L.); (S.G.-G.)
| | - Eva Salinas
- Microbiology Department, Basic Science Center, Autonomous University of Aguascalientes, Aguascalientes 20100, Mexico;
| | - Gretel Mendoza-Almanza
- Master in Biomedical Sciences, Autonomous University of Zacatecas, Zacatecas 98160, Mexico;
- National Council of Science and Technology, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|