1
|
Will KJ, Magalhaes ES, Moura CAA, Trevisan G, Silva GS, Mellagi APG, Ulguim RR, Bortolozzo FP, Linhares DCL. Risk factors associated with piglet pre-weaning mortality in a Midwestern U.S. swine production system from 2020 to 2022. Prev Vet Med 2024; 232:106316. [PMID: 39180948 DOI: 10.1016/j.prevetmed.2024.106316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/14/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
Piglet pre-weaning mortality (PWM) is a significant issue in the U.S. swine industry, causing economic losses and raising sustainability and animal welfare concerns. This study conducted a multivariable analysis to identify factors associated with PWM in a Midwestern U.S. swine production system. Weekly data from 47 sow farms (7207 weaning weeks) were captured from January 2020 to December 2022. Initially, 29 variables regarding farm infrastructure, productivity parameters, health status, and interventions were selected for univariate analysis to assess their association with PWM. The initial multivariable analysis included the variables with P < 0.20 in the univariate analyses. A backward stepwise model selection was conducted by excluding variables with P > 0.05, and the final multivariable model consisted of 19 significant risk factors and 6 interaction terms. The overall average PWM for the study population was 14.02 %. Yearly variations in PWM were observed, with the highest recorded in 2020 (16.61 %) and the lowest in 2021 (15.78 %). Cohorts with a pond water source, lower farrowing rate (71.9 %), higher farrowing parity (5.1), shorter gestation length (116.2 days), and using oxytocin during farrowing had increased PWM. The higher productivity parameters such as mummies rate, stillborn rate, and average total born, the higher the PWM was. Additionally, health status and intervention-related factors were associated with PWM, where higher PWM rates were observed in herds facing porcine reproductive and respiratory syndrome virus (PRRSV) outbreaks, porcine epidemic diarrhea virus (PEDV) positive, the weeks before and during feed medication, and weeks without using Rotavirus vaccine or Rotavirus feedback. Altogether, these results corroborate that PWM is a multifactorial problem, and a better understanding of the risk factors is essential in developing strategies to improve survival rates. Therefore, this study identified the major risk factors associated with PWM for groups of pigs raised under field conditions, and the results underscore the significance of data analysis in comprehending the unique challenges and opportunities inherent to each system.
Collapse
Affiliation(s)
- Kelly J Will
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States; Setor de Suínos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Edison S Magalhaes
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States.
| | | | - Giovani Trevisan
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Gustavo S Silva
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ana Paula G Mellagi
- Setor de Suínos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael R Ulguim
- Setor de Suínos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Daniel C L Linhares
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Kumar D, Anderson Reever AV, Pittman JS, Springer NL, Mallen K, Roman-Sosa G, Sangewar N, Casey-Moore MC, Bowen MD, Mwangi W, Marthaler DG. Role of Pre-Farrow Natural Planned Exposure of Gilts in Shaping the Passive Antibody Response to Rotavirus A in Piglets. Vaccines (Basel) 2023; 11:1866. [PMID: 38140269 PMCID: PMC10748143 DOI: 10.3390/vaccines11121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Natural planned exposure (NPE) remains one of the most common methods in swine herds to boost lactogenic immunity against rotaviruses. However, the efficacy of NPE protocols in generating lactogenic immunity has not been investigated before. A longitudinal study was conducted to investigate the dynamics of genotype-specific antibody responses to different doses (3, 2 and 1) of Rotavirus A (RVA) NPE (genotypes G4, G5, P[7] and P[23]) in gilts and the transfer of lactogenic immunity to their piglets. Group 1 gilts received three doses of NPE at 5, 4 and 3 weeks pre-farrow (WPF), group 2 received two doses at 5 and 3 WPF, group 3 received one dose at 5 WPF, and group 4 received no NPE (control group). VP7 (G4 and G5) and truncated VP4* (P[7] and P[23]) antigens of RVA were expressed in mammalian and bacterial expression systems, respectively, and used to optimize indirect ELISAs to determine antibody levels against RVA in gilts and piglets. In day-0 colostrum samples, group 1 had significantly higher IgG titers compared to the control group for all four antigens, and either significantly or numerically higher IgG titers than groups 2 and 3. Group 1 also had significantly higher colostrum IgA levels than the control group for all antigens (except G4), and either significantly or numerically higher IgA levels compared to groups 2 and 3. In piglet serum, group 1 piglets had higher IgG titers for all four antigens at day 0 than the other groups. Importantly, RVA NPE stimulated antibodies in all groups regardless of the treatment doses and prevented G4, G5, P[7] and P[23] RVA fecal shedding prior to weaning in piglets in the absence of viral challenge. The G11 and P[34] RVA genotypes detected from pre-weaning piglets differed at multiple amino acid positions with parent NPE strains. In conclusion, the results of this study suggest that the group 1 NPE regimen (three doses of NPE) resulted in the highest anti-RVA antibody (IgG and IgA) levels in the colostrum/milk, and the highest IgG levels in piglet serum.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Amanda V. Anderson Reever
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
| | | | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Kylynn Mallen
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Gleyder Roman-Sosa
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany;
| | - Neha Sangewar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | - Mary C. Casey-Moore
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA; (M.C.C.-M.); (M.D.B.)
| | - Michael D. Bowen
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases (NCIRD), Centers for Disease Control and Prevention, 1600 Clifton Rd NE, Atlanta, GA 30329, USA; (M.C.C.-M.); (M.D.B.)
| | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA (N.S.); (W.M.)
| | | |
Collapse
|
3
|
Kumar D, Anderson AV, Pittman J, Springer NL, Marthaler DG, Mwangi W. Antibody Response to Rotavirus C Pre-Farrow Natural Planned Exposure to Gilts and Their Piglets. Viruses 2022; 14:2250. [PMID: 36298806 PMCID: PMC9610825 DOI: 10.3390/v14102250] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022] Open
Abstract
A longitudinal study was conducted to investigate the dynamics of genotype-specific (G6 and P[5]) antibody response to different doses (3, 2 and 1) of rotavirus C (RVC) natural planned exposure (NPE) in gilt serum, colostrum/milk and piglet serum, and compare with antibody response to rotavirus A NPE (RVA genotypes G4, G5, P[7] and P[23]). G6 and P[5] antigens of RVC were expressed in mammalian and bacterial cells, and used to develop individual indirect ELISAs. For both antigens, group 1 with 3 doses of NPE resulted in significantly higher IgG and IgA levels in colostrum compared to other groups. In piglet serum, group 1 P[5] IgG levels were significantly higher than other study groups at day 0 and 7. Piglet serum had higher IgA levels for group 1 piglets compared to other groups for both antigens. A comparison of colostrum antibody levels to rotavirus A (RVA) and RVC revealed that colostrum RVC IgG and IgA titers were lower than RVA titers irrespective of the G and P-type. Next generation sequencing (NGS) detected same RVC genotypes (G6 and P[5]) circulating in the piglet population under the window of lactogenic immunity. We conclude that the low RVC load in NPE material (real-time PCR Ct-values 32.55, 29.32 and 30.30) failed to induce sufficient maternal immunity in gilts (low colostrum RVC antibody levels) and passively prevent piglets from natural RVC infection in the farrowing room. To the best of our knowledge, this is the first study comparing differences in antibody response to porcine RVA and RVC in a commercial setting.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Amanda V. Anderson
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
| | - Jeremy Pittman
- Smithfield Foods, Inc., 434 E Main St., Waverly, VA 23890, USA
| | - Nora L. Springer
- Clinical Pathology, Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Waithaka Mwangi
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
4
|
Doerksen T, Christensen T, Lu A, Noll L, Bai J, Henningson J, Palinski R. Assessment of Porcine Rotavirus-associated virome variations in pigs with enteric disease. Vet Microbiol 2022; 270:109447. [PMID: 35561657 DOI: 10.1016/j.vetmic.2022.109447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/14/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|