1
|
Galewski PJ, Majumdar R, Lebar MD, Strausbaugh CA, Eujayl IA. Combined Omics Approaches Reveal Distinct Mechanisms of Resistance and/or Susceptibility in Sugar Beet Double Haploid Genotypes at Early Stages of Beet Curly Top Virus Infection. Int J Mol Sci 2023; 24:15013. [PMID: 37834460 PMCID: PMC10573692 DOI: 10.3390/ijms241915013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
Sugar beet is susceptible to Beet curly top virus (BCTV), which significantly reduces yield and sugar production in the semi-arid growing regions worldwide. Sources of genetic resistance to BCTV is limited and control depends upon insecticide seed treatments with neonicotinoids. Through double haploid production and genetic selection, BCTV resistant breeding lines have been developed. Using BCTV resistant (R) [KDH13; Line 13 and KDH4-9; Line 4] and susceptible (S) [KDH19-17; Line 19] lines, beet leafhopper mediated natural infection, mRNA/sRNA sequencing, and metabolite analyses, potential mechanisms of resistance against the virus and vector were identified. At early infection stages (2- and 6-days post inoculation), examples of differentially expressed genes highly up-regulated in the 'R' lines (vs. 'S') included EL10Ac5g10437 (inhibitor of trypsin and hageman factor), EL10Ac6g14635 (jasmonate-induced protein), EL10Ac3g06016 (ribosome related), EL10Ac2g02812 (probable prolyl 4-hydroxylase 10), etc. Pathway enrichment analysis showed differentially expressed genes were predominantly involved with peroxisome, amino acids metabolism, fatty acid degradation, amino/nucleotide sugar metabolism, etc. Metabolite analysis revealed significantly higher amounts of specific isoflavonoid O-glycosides, flavonoid 8-C glycosides, triterpenoid, and iridoid-O-glycosides in the leaves of the 'R' lines (vs. 'S'). These data suggest that a combination of transcriptional regulation and production of putative antiviral metabolites might contribute to BCTV resistance. In addition, genome divergence among BCTV strains differentially affects the production of small non-coding RNAs (sncRNAs) and small peptides which may potentially affect pathogenicity and disease symptom development.
Collapse
Affiliation(s)
- Paul J. Galewski
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
- Plant Germplasm Introduction and Testing Research Unit, United States Department of Agriculture—Agricultural Research Service, Pullman, WA 99164, USA
| | - Rajtilak Majumdar
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Matthew D. Lebar
- Food and Feed Safety Research Unit, Southern Regional Research Center, United States Department of Agriculture—Agricultural Research Service, New Orleans, LA 70179, USA;
| | - Carl A. Strausbaugh
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| | - Imad A. Eujayl
- Northwest Irrigation and Soils Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Kimberly, ID 83341, USA; (P.J.G.); (C.A.S.); (I.A.E.)
| |
Collapse
|
2
|
Mahlare MJS, Husselmann L, Lewu MN, Bester C, Lewu FB, Caleb OJ. Analysis of the Differentially Expressed Proteins and Metabolic Pathways of Honeybush ( Cyclopia subternata) in Response to Water Deficit Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112181. [PMID: 37299160 DOI: 10.3390/plants12112181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/12/2023]
Abstract
Honeybush (Cyclopia spp.) is a rich source of antioxidant properties and phenolic compounds. Water availability plays a crucial role in plant metabolic processes, and it contributes to overall quality. Thus, this study aimed to investigate changes in molecular functions, cellular components, and biological processes of Cyclopia subternata exposed to different water stress conditions, which include well-watered (as Control, T1), semi-water stressed (T2), and water-deprived (T3) potted plants. Samples were also collected from a well-watered commercial farm first cultivated in 2013 (T13) and then cultivated in 2017 (T17) and 2019 (T19). Differentially expressed proteins extracted from C. subternata leaves were identified using LC-MS/MS spectrometry. A total of 11 differentially expressed proteins (DEPs) were identified using Fisher's exact test (p < 0.00100). Only α-glucan phosphorylase was found to be statistically common between T17 and T19 (p < 0.00100). Notably, α-glucan phosphorylase was upregulated in the older vegetation (T17) and downregulated in T19 by 1.41-fold. This result suggests that α-glucan phosphorylase was needed in T17 to support the metabolic pathway. In T19, five DEPs were upregulated, while the other six were downregulated. Based on gene ontology, the DEPs in the stressed plant were associated with cellular and metabolic processes, response to stimulus, binding, catalytic activity, and cellular anatomical entity. Differentially expressed proteins were clustered based on the Kyoto Encyclopedia of Genes and Genomes (KEGG), and sequences were linked to metabolic pathways via enzyme code and KEGG ortholog. Most proteins were involved in photosynthesis, phenylpropanoid biosynthesis, thiamine, and purine metabolism. This study revealed the presence of trans-cinnamate 4-monooxygenase, an intermediate for the biosynthesis of a large number of substances, such as phenylpropanoids and flavonoids.
Collapse
Affiliation(s)
- Mary-Jane S Mahlare
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington Campus, Private Bag X8, Wellington 7654, South Africa
| | - Lizex Husselmann
- Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa
| | - Muinat N Lewu
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Cecilia Bester
- Agricultural Research Council (ARC) Infruitec-Nietvoorbij, Stellenbosch 7599, South Africa
| | - Francis B Lewu
- Department of Agriculture, Faculty of Applied Sciences, Cape Peninsula University of Technology, Wellington Campus, Private Bag X8, Wellington 7654, South Africa
| | - Oluwafemi James Caleb
- Africa Institute for Postharvest Technology, Faculty of AgriSciences, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
- Department of Horticultural Science, Faculty of AgriSciences, Stellenbosch University, Matieland 7602, South Africa
| |
Collapse
|
3
|
Yadav BG, Aakanksha, Kumar R, Yadava SK, Kumar A, Ramchiary N. Understanding the Proteomes of Plant Development and Stress Responses in Brassica Crops. J Proteome Res 2023; 22:660-680. [PMID: 36786770 DOI: 10.1021/acs.jproteome.2c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Brassica crops have great economic value due to their rich nutritional content and are therefore grown worldwide as oilseeds, vegetables, and condiments. Deciphering the molecular mechanisms associated with the advantageous phenotype is the major objective of various Brassica improvement programs. As large technological advancements have been achieved in the past decade, the methods to understand molecular mechanisms underlying the traits of interest have also taken a sharp upturn in plant breeding practices. Proteomics has emerged as one of the preferred choices nowadays along with genomics and other molecular approaches, as proteins are the ultimate effector molecules responsible for phenotypic changes in living systems, and allow plants to resist variable environmental stresses. In the last two decades, rapid progress has been made in the field of proteomics research in Brassica crops, but a comprehensive review that collates the different studies is lacking. This review provides an inclusive summary of different proteomic studies undertaken in Brassica crops for cytoplasmic male sterility, oil content, and proteomics of floral organs and seeds, under different biotic and abiotic stresses including post-translational modifications of proteins. This comprehensive review will help in understanding the role of different proteins in controlling plant phenotypes, and provides information for initiating future studies on Brassica breeding and improvement programs.
Collapse
Affiliation(s)
- Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Aakanksha
- Department of Genetics, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, Delhi, India
| | - Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi 110021, Delhi, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod 671316, Kerala, India
| | - Nirala Ramchiary
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, Delhi, India
| |
Collapse
|
4
|
Kausar R, Wang X, Komatsu S. Crop Proteomics under Abiotic Stress: From Data to Insights. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212877. [PMID: 36365330 PMCID: PMC9657731 DOI: 10.3390/plants11212877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/22/2022] [Indexed: 06/09/2023]
Abstract
Food security is a major challenge in the present world due to erratic weather and climatic changes. Environmental stress negatively affects plant growth and development which leads to reduced crop yields. Technological advancements have caused remarkable improvements in crop-breeding programs. Proteins have an indispensable role in developing stress resilience and tolerance in crops. Genomic and biotechnological advancements have made the process of crop improvement more accurate and targeted. Proteomic studies provide the information required for such targeted approaches. The crosstalk among cellular components is being analyzed by subcellular proteomics. Additionally, the functional diversity of proteins is being unraveled by post-translational modifications during abiotic stress. The exploration of precise cellular responses and the networking among different cellular organelles help in the prediction of signaling pathways and protein-protein interactions. High-throughput mass-spectrometry-based protein studies are now possible due to incremental advancements in mass-spectrometry techniques, sample protocols, and bioinformatic tools as well as the increasing availability of plant genome sequence information for multiple species. In this review, the key role of proteomic analysis in identifying the abiotic-stress-responsive mechanisms in various crops was summarized. The development and availability of advanced computational tools were discussed in detail. The highly variable protein responses among different crops have provided a wide avenue for molecular-marker-assisted genetic buildup studies to develop smart, high-yielding, and stress-tolerant varieties to cope with food-security challenges.
Collapse
Affiliation(s)
- Rehana Kausar
- Department of Botany, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan
| |
Collapse
|
5
|
Berka M, Kopecká R, Berková V, Brzobohatý B, Černý M. Regulation of heat shock proteins 70 and their role in plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1894-1909. [PMID: 35022724 PMCID: PMC8982422 DOI: 10.1093/jxb/erab549] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
Heat shock proteins 70 (HSP70s) are steadily gaining more attention in the field of plant biotic interactions. Though their regulation and activity in plants are much less well characterized than are those of their counterparts in mammals, accumulating evidence indicates that the role of HSP70-mediated defense mechanisms in plant cells is indispensable. In this review, we summarize current knowledge of HSP70 post-translational control in plants. We comment on the phytohormonal regulation of HSP70 expression and protein abundance, and identify a prominent role for cytokinin in HSP70 control. We outline HSP70s' subcellular localizations, chaperone activity, and chaperone-mediated protein degradation. We focus on the role of HSP70s in plant pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity, and discuss the contribution of different HSP70 subfamilies to plant defense against pathogens.
Collapse
Affiliation(s)
- Miroslav Berka
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Romana Kopecká
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Veronika Berková
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Břetislav Brzobohatý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
| | - Martin Černý
- Department of Molecular Biology and Radiobiology, Faculty of AgriSciences, Mendel University in Brno, CZ-61300 Brno, Czech Republic
- Correspondence:
| |
Collapse
|