1
|
Chao S, Sun Y, Zhang Y, Chen Y, Song L, Li P, Tang X, Liang J, Lv B. The response of microbiome assembly within different niches across four stages to the cultivation of glyphosate-tolerant and conventional soybean varieties. Front Microbiol 2024; 15:1439735. [PMID: 39386363 PMCID: PMC11461410 DOI: 10.3389/fmicb.2024.1439735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Plants are inherently connected with the microbiome, which plays a crucial role in regulating various host plant biological processes, including immunity, nutrient acquisition, and resistance against abiotic and biotic stresses. Many factors affect the interaction between plants and microbiome. Methods and results In this study, microbiome samples were collected from five niches (bulk soil, rhizoplane, root endosphere, phylloplane, and leaf endosphere) across four developmental stages (seedling, flowering, podding, and maturity) of various soybean varieties. Composition and structure of bacterial and fungal communities were analyzed using 16S rRNA gene and ITS (Internally Transcribed Spacer) region amplicon sequencing. It was observed that both niches and developmental stages significantly impact on the assembly and composition of soybean microbiome. However, variety, presence of a transgene, and glyphosate application had minimal effects on microbial communities. The dominant microbiome varied across the five niches, with most containing beneficial microbial communities capable of promoting plant growth or increasing disease resistance. Types and abundance of the dominant microbes affected network stability, potentially resulting in functional changes in different ecological niches. Conclusion This study provides theoretical evidence for microbial protection of plants against diseases and demonstrates that systematic analysis of the composition and diversity of soybean microbiomes can contribute to the development of biological control technologies.
Collapse
Affiliation(s)
- Shengqian Chao
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Yu Sun
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Yin Zhang
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Yifan Chen
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Lili Song
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Peng Li
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
| | - Xueming Tang
- School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Beibei Lv
- Biotechnology Research Institute, Key Laboratory of Agricultural Genetics and Breeding, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory for Safety Assessment (Environment) of Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Beijing, China
- Shanghai Agricultural Biosafety Evaluation and Testing Professional Technical Service Platform, Shanghai, China
- CIMMYT-China Specialty Maize Research Center, Shanghai, China
| |
Collapse
|
2
|
Zadegan SB, Kim W, Abbas HMK, Kim S, Krishnan HB, Hewezi T. Differential symbiotic compatibilities between rhizobium strains and cultivated and wild soybeans revealed by anatomical and transcriptome analyses. FRONTIERS IN PLANT SCIENCE 2024; 15:1435632. [PMID: 39290740 PMCID: PMC11405202 DOI: 10.3389/fpls.2024.1435632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
Various species of rhizobium establish compatible symbiotic relationships with soybean (Glycine max) leading to the formation of nitrogen-fixing nodules in roots. The formation of functional nodules is mediated through complex developmental and transcriptional reprogramming that involves the activity of thousands of plant genes. However, host transcriptome that differentiate between functional or non-functional nodules remain largely unexplored. In this study, we investigated differential compatibilities between rhizobium strains (Bradyrhizobium diazoefficiens USDA110 Bradyrhizobium sp. strain LVM105) and cultivated and wild soybeans. The nodulation assays revealed that both USDA110 and LVM105 strains effectively nodulate G. soja but only USDA110 can form symbiotic relationships with Williams 82. LVM105 formed pseudonodules on Williams 82 that consist of a central nodule-like mass that are devoid of any rhizobia. RNA-seq data revealed that USDA110 and LVM105 induce distinct transcriptome programing in functional mature nodules formed on G. soja roots, where genes involved in nucleosome assembly, DNA replication, regulation of cell cycle, and defense responses play key roles. Transcriptome comparison also suggested that activation of genes associated with cell wall biogenesis and organization and defense responses together with downregulation of genes involved in the biosynthesis of isoprenoids and antioxidant stress are associated with the formation of non-functional nodules on Williams 82 roots. Moreover, our analysis implies that increased activity of genes involved in oxygen binding, amino acid transport, and nitrate transport differentiates between fully-developed nodules in cultivated versus wild soybeans.
Collapse
Affiliation(s)
- Sobhan Bahrami Zadegan
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, United States
| | - Wonseok Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | | | - Sunhyung Kim
- Plant Science Division, University of Missouri, Columbia, MO, United States
| | - Hari B Krishnan
- Plant Science Division, University of Missouri, Columbia, MO, United States
- Plant Genetics Research, The United States Department of Agriculture (USDA) Agricultural Research Service, Columbia, MO, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
3
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
4
|
Liang R, Liu JL, Ji XQ, Olsen KM, Qiang S, Song XL. Fitness and Hard Seededness of F 2 and F 3 Descendants of Hybridization between Herbicide-Resistant Glycine max and G. soja. PLANTS (BASEL, SWITZERLAND) 2023; 12:3671. [PMID: 37960027 PMCID: PMC10650743 DOI: 10.3390/plants12213671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
The commercial cultivation of herbicide-resistant (HR) transgenic soybeans (Glycine max L. Merr.) raises great concern that transgenes may introgress into wild soybeans (Glycine soja Sieb. et Zucc.) via pollen-mediated gene flow, which could increase the ecological risks of transgenic weed populations and threaten the genetic diversity of wild soybean. To assess the fitness of hybrids derived from transgenic HR soybean and wild soybean, the F2 and F3 descendants of crosses of the HR soybean line T14R1251-70 and two wild soybeans (LNTL and JLBC, which were collected from LiaoNing TieLing and JiLin BaiCheng, respectively), were planted along with their parents in wasteland or farmland soil, with or without weed competition. The fitness of F2 and F3 was significantly increased compared to the wild soybeans under all test conditions, and they also showed a greater competitive ability against weeds. Seeds produced by F2 and F3 were superficially similar to wild soybeans in having a hard seed coat; however, closer morphological examination revealed that the hard-seededness was lower due to the seed coat structure, specifically the presence of thicker hourglass cells in seed coat layers and lower Ca content in palisade epidermis. Hybrid descendants containing the cp4-epsps HR allele were able to complete their life cycle and produce a large number of seeds in the test conditions, which suggests that they would be able to survive in the soil beyond a single growing season, germinate, and grow under suitable conditions. Our findings indicate that the hybrid descendants of HR soybean and wild soybean may pose potential ecological risks in regions of soybean cultivation where wild soybean occurs.
Collapse
Affiliation(s)
- Rong Liang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Jia-Li Liu
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Xue-Qin Ji
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Kenneth M. Olsen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Sheng Qiang
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| | - Xiao-Ling Song
- Weed Research Laboratory, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (R.L.); (J.-L.L.); (X.-Q.J.); (S.Q.)
| |
Collapse
|
5
|
Nzepang DT, Gully D, Nguepjop JR, Zaiya Zazou A, Tossim HA, Sambou A, Rami JF, Hocher V, Fall S, Svistoonoff S, Fonceka D. Mapping of QTLs Associated with Biological Nitrogen Fixation Traits in Peanuts (Arachis hypogaea L.) Using an Interspecific Population Derived from the Cross between the Cultivated Species and Its Wild Ancestors. Genes (Basel) 2023; 14:genes14040797. [PMID: 37107555 PMCID: PMC10138160 DOI: 10.3390/genes14040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Peanuts (Arachis hypogaea L.) are an allotetraploid grain legume mainly cultivated by poor farmers in Africa, in degraded soil and with low input systems. Further understanding nodulation genetic mechanisms could be a relevant option to facilitate the improvement of yield and lift up soil without synthetic fertilizers. We used a subset of 83 chromosome segment substitution lines (CSSLs) derived from the cross between a wild synthetic tetraploid AiAd (Arachis ipaensis × Arachis duranensis)4× and the cultivated variety Fleur11, and evaluated them for traits related to BNF under shade-house conditions. Three treatments were tested: without nitrogen; with nitrogen; and without nitrogen, but with added0 Bradyrhizobium vignae strain ISRA400. The leaf chlorophyll content and total biomass were used as surrogate traits for BNF. We found significant variations for both traits specially linked to BNF, and four QTLs (quantitative trait loci) were consistently mapped. At all QTLs, the wild alleles decreased the value of the trait, indicating a negative effect on BNF. A detailed characterization of the lines carrying those QTLs in controlled conditions showed that the QTLs affected the nitrogen fixation efficiency, nodule colonization, and development. Our results provide new insights into peanut nodulation mechanisms and could be used to target BNF traits in peanut breeding programs.
Collapse
Affiliation(s)
- Darius T. Nzepang
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
| | - Djamel Gully
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Joël R. Nguepjop
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Arlette Zaiya Zazou
- Institute of Agricultural Research for Development (IRAD) (IRAD), Maroua, Cameroon
| | - Hodo-Abalo Tossim
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
| | - Aissatou Sambou
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
| | - Jean-François Rami
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Valerie Hocher
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Saliou Fall
- Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Sergio Svistoonoff
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Daniel Fonceka
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Correspondence:
| |
Collapse
|
6
|
Luo T, Li CN, Yan R, Huang K, Li YR, Liu XY, Lakshmanan P. Physiological and molecular insights into the resilience of biological nitrogen fixation to applied nitrogen in Saccharum spontaneum, wild progenitor of sugarcane. FRONTIERS IN PLANT SCIENCE 2023; 13:1099701. [PMID: 36714748 PMCID: PMC9881415 DOI: 10.3389/fpls.2022.1099701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
Excessive use of nitrogen (N) fertilizer for sugarcane cultivation is a significant cause of greenhouse gas emission. N use-efficiency (NUE) of sugarcane is relatively low, and considerable effort is now directed to exploit biological nitrogen fixation (BNF) in sugarcane. We hypothesize that genetic base-broadening of sugarcane using high-BNF Saccharum spontaneum, a wild progenitor of sugarcane, will help develop N-efficient varieties. We found remarkable genetic variation for BNF and growth in S. spontaneum accessions, and BNF in some accessions remained highly resilient to inorganic N application. Physiological and molecular analyses of two S. spontaneum accessions with high-BNF capacity and growth, namely G152 and G3, grown under N replete and low N conditions showed considerable similarity for total N, NH4-N, soluble sugar, indoleacetic acid, gibberellic acid, zeatin and abscisic acid content; yet, they were strikingly different at molecular level. Global gene expression analysis of G152 and G3 grown under contrasting N supply showed genotype effect explaining much of the gene expression variation observed. Differential gene expression analysis found an over-representation of carbohydrate and amino acid metabolism and transmembrane transport genes in G152 and an enrichment of lipid metabolism and single-organism processes genes in G3, suggesting that distinctly divergent metabolic strategies are driving N-related processes in these accessions. This was attested by the remarkable variation in carbon, N, amino acid and hormone metabolism-related gene expression in G152 and G3 under high- and low-N supply. We conclude that both accessions may be achieving similar BNF and growth phenotypes through overlapping but distinctly different biochemical and molecular mechanisms.
Collapse
Affiliation(s)
- Ting Luo
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Chang-Ning Li
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Rui Yan
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Kejun Huang
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiao-Yan Liu
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute; Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs, Guangxi Academy of Agricultural Sciences, Nanning, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
7
|
Zhang H, Mascher M, Abbo S, Jayakodi M. Advancing Grain Legumes Domestication and Evolution Studies with Genomics. PLANT & CELL PHYSIOLOGY 2022; 63:1540-1553. [PMID: 35534441 PMCID: PMC9680859 DOI: 10.1093/pcp/pcac062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 06/14/2023]
Abstract
Grain legumes were domesticated in parallel with cereals in several regions of the world and formed the economic basis of early farming cultures. Since then, legumes have played a vital role in human and animal diets and in fostering agrobiodiversity. Increasing grain legume cultivation will be crucial to safeguard nutritional security and the resilience of agricultural ecosystems across the globe. A better understanding of the molecular underpinnings of domestication and crop evolution of grain legumes may be translated into practical approaches in modern breeding programs to stabilize yield, which is threatened by evolving pathogens and changing climates. During recent decades, domestication research in all crops has greatly benefited from the fast progress in genomic technologies. Yet still, many questions surrounding the domestication and diversification of legumes remain unanswered. In this review, we assess the potential of genomic approaches in grain legume research. We describe the centers of origin and the crucial domestication traits of grain legumes. In addition, we survey the effect of domestication on both above-ground and below-ground traits that have economic importance. Finally, we discuss open questions in grain legume domestication and diversification and outline how to bridge the gap between the preservation of historic crop diversity and their utilization in modern plant breeding.
Collapse
Affiliation(s)
- Hailin Zhang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Shahal Abbo
- The Levi Eshkol School of Agriculture, The Hebrew University of Jerusalem, POB 12, Rehovot 7610001, Israel
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, Gatersleben, Seeland 06466, Germany
| |
Collapse
|
8
|
Raaijmakers JM, Kiers ET. Rewilding plant microbiomes. Science 2022; 378:599-600. [DOI: 10.1126/science.abn6350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microbiota of crop ancestors may offer a way to enhance sustainable food production
Collapse
Affiliation(s)
- Jos M. Raaijmakers
- Netherlands Institute of Ecology, Wageningen, Netherlands
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - E. Toby Kiers
- Amsterdam Institute for Life and Environment, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
9
|
Plant-Microbe Interaction in Sustainable Agriculture: The Factors That May Influence the Efficacy of PGPM Application. SUSTAINABILITY 2022. [DOI: 10.3390/su14042253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The indiscriminate use of chemical fertilizers and pesticides has caused considerable environmental damage over the years. However, the growing demand for food in the coming years and decades requires the use of increasingly productive and efficient agriculture. Several studies carried out in recent years have shown how the application of plant growth-promoting microbes (PGPMs) can be a valid substitute for chemical industry products and represent a valid eco-friendly alternative. However, because of the complexity of interactions created with the numerous biotic and abiotic factors (i.e., environment, soil, interactions between microorganisms, etc.), the different formulates often show variable effects. In this review, we analyze the main factors that influence the effectiveness of PGPM applications and some of the applications that make them a useful tool for agroecological transition.
Collapse
|
10
|
Wendlandt CE, Gano-Cohen KA, Stokes PJN, Jonnala BNR, Zomorrodian AJ, Al-Moussawi K, Sachs JL. Wild legumes maintain beneficial soil rhizobia populations despite decades of nitrogen deposition. Oecologia 2022; 198:419-430. [PMID: 35067801 DOI: 10.1007/s00442-022-05116-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Natural landscapes are increasingly impacted by nitrogen enrichment from aquatic and airborne pollution sources. Nitrogen enrichment in the environment can eliminate the net benefits that plants gain from nitrogen-fixing microbes such as rhizobia, potentially altering host-mediated selection on nitrogen fixation. However, we know little about the long-term effects of nitrogen enrichment on this critical microbial service. Here, we sampled populations of the legume Acmispon strigosus and its associated soil microbial communities from sites spanning an anthropogenic nitrogen deposition gradient. We measured the net growth benefits plants obtained from their local soil microbial communities and quantified plant investment into nodules that house nitrogen-fixing rhizobia. We found that plant growth benefits from sympatric soil microbes did not vary in response to local soil nitrogen levels, and instead varied mainly among plant lines. Soil nitrogen levels positively predicted the number of nodules formed on sympatric plant hosts, although this was likely due to plant genotypic variation in nodule formation, rather than variation among soil microbial communities. The capacity of all the tested soil microbial communities to improve plant growth is consistent with plant populations imposing strong selection on rhizobial nitrogen fixation despite elevated soil nitrogen levels, suggesting that host control traits in A. strigosus are stable under long-term nutrient enrichment.
Collapse
Affiliation(s)
- Camille E Wendlandt
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Kelsey A Gano-Cohen
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Peter J N Stokes
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA
| | - Basava N R Jonnala
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Avissa J Zomorrodian
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Khadija Al-Moussawi
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521, USA
| | - Joel L Sachs
- Department of Botany and Plant Sciences, University of California, Riverside, CA, 92521, USA. .,Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA. .,Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
11
|
Kebede E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.767998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Legumes improve soil fertility through the symbiotic association with microorganisms, such as rhizobia, which fix the atmospheric nitrogen and make nitrogen available to the host and other crops by a process known as biological nitrogen fixation (BNF). Legumes included in the cropping system improve the fertility of the soil and the yield of crops. The advantages of legumes in the cropping system are explained in terms of direct nitrogen transfer, residual fixed nitrogen, nutrient availability and uptake, effect on soil properties, breaking of pests' cycles, and enhancement of other soil microbial activity. The best benefits from the legumes and BNF system can be utilized by integrating them into cropping systems. The most common practices to integrate legumes and their associated BNF into agricultural systems are crop rotation, simultaneous intercropping, improved fallows, green manuring, and alley cropping. However, the level of utilizing nitrogen fixation requires improvement of the systems, such as selecting appropriate legume genotypes, inoculation with effective rhizobia, and the use of appropriate agronomic practices and cropping systems. Therefore, using legumes at their maximum genetic potential, inoculation of legumes with compatible rhizobia, and using appropriate agronomic practices and cropping systems are very important for increasing food production. Importantly, the utilization of legumes as an integral component of agricultural practice in promoting agricultural productivity has gained more traction in meeting the demand of food production of the world populace. Priority should, thus, be given to value the process of BNF through more sustainable technologies and expansion of knowledge to the system.
Collapse
|
12
|
Schaedel M, Hidrobo G, Grossman J. From Microns to Meters: Exploring Advances in Legume Microbiome Diversity for Agroecosystem Benefits. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.668195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Legumes are of primary importance for agroecosystems because they provide protein-rich foods and enhance soil fertility through fixed atmospheric nitrogen. The legume-rhizobia symbiosis that makes this possible has been extensively studied, from basic research on biochemical signaling to practical applications in cropping systems. While rhizobia are the most-studied group of associated microorganisms, the functional benefit they confer to their legume hosts by fixing nitrogen is not performed in isolation. Indeed, non-rhizobia members of the rhizosphere and nodule microbiome are now understood to contribute in multiple ways to nodule formation, legume fitness, and other agroecosystem services. In this review, we summarize advances contributing to our understanding of the diversity and composition of bacterial members of the belowground legume microbiome. We also highlight applied work in legume food and forage crops that link microbial community composition with plant functional benefits. Ultimately, further research will assist in the development of multi-species microbial inoculants and cropping systems that maximize plant nutrient benefits, while reducing sources of agricultural pollution.
Collapse
|
13
|
Abstract
Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and "farmed" organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
Collapse
Affiliation(s)
- Erik F. Y. Hom
- Department of Biology and Center for Biodiversity and Conservation Research, University of Mississippi, University, MS 38677 USA
| | - Alexandra S. Penn
- Department of Sociology and Centre for Evaluation of Complexity Across the Nexus, University of Surrey, Guildford, Surrey, GU2 7XH UK
| |
Collapse
|
14
|
Soldan R, Fusi M, Cardinale M, Daffonchio D, Preston GM. The effect of plant domestication on host control of the microbiota. Commun Biol 2021; 4:936. [PMID: 34354230 PMCID: PMC8342519 DOI: 10.1038/s42003-021-02467-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 07/16/2021] [Indexed: 02/07/2023] Open
Abstract
Macroorganisms are colonized by microbial communities that exert important biological and ecological functions, the composition of which is subject to host control and has therefore been described as "an ecosystem on a leash". However, domesticated organisms such as crop plants are subject to both artificial selection and natural selection exerted by the agricultural ecosystem. Here, we propose a framework for understanding how host control of the microbiota is influenced by domestication, in which a double leash acts from domesticator to host and host to microbes. We discuss how this framework applies to a plant compartment that has demonstrated remarkable phenotypic changes during domestication: the seed.
Collapse
Affiliation(s)
- Riccardo Soldan
- University of Oxford, Department of Plant Sciences, Oxford, UK.
| | - Marco Fusi
- Edinburgh Napier University, School of Applied Sciences, Edinburgh, UK
| | - Massimiliano Cardinale
- University of Salento, Department of Biological and Environmental Sciences and Technologies, Lecce, Italy
| | - Daniele Daffonchio
- King Abdullah University of Science and Technology (KAUST), Red Sea Research Center (RSRC), Thuwal, Saudi Arabia
| | - Gail M Preston
- University of Oxford, Department of Plant Sciences, Oxford, UK.
| |
Collapse
|
15
|
Udvardi M, Below FE, Castellano MJ, Eagle AJ, Giller KE, Ladha JK, Liu X, Maaz TM, Nova-Franco B, Raghuram N, Robertson GP, Roy S, Saha M, Schmidt S, Tegeder M, York LM, Peters JW. A Research Road Map for Responsible Use of Agricultural Nitrogen. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.660155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitrogen (N) is an essential but generally limiting nutrient for biological systems. Development of the Haber-Bosch industrial process for ammonia synthesis helped to relieve N limitation of agricultural production, fueling the Green Revolution and reducing hunger. However, the massive use of industrial N fertilizer has doubled the N moving through the global N cycle with dramatic environmental consequences that threaten planetary health. Thus, there is an urgent need to reduce losses of reactive N from agriculture, while ensuring sufficient N inputs for food security. Here we review current knowledge related to N use efficiency (NUE) in agriculture and identify research opportunities in the areas of agronomy, plant breeding, biological N fixation (BNF), soil N cycling, and modeling to achieve responsible, sustainable use of N in agriculture. Amongst these opportunities, improved agricultural practices that synchronize crop N demand with soil N availability are low-hanging fruit. Crop breeding that targets root and shoot physiological processes will likely increase N uptake and utilization of soil N, while breeding for BNF effectiveness in legumes will enhance overall system NUE. Likewise, engineering of novel N-fixing symbioses in non-legumes could reduce the need for chemical fertilizers in agroecosystems but is a much longer-term goal. The use of simulation modeling to conceptualize the complex, interwoven processes that affect agroecosystem NUE, along with multi-objective optimization, will also accelerate NUE gains.
Collapse
|
16
|
Yang T, Evans B, Bainard LD. Pulse Frequency in Crop Rotations Alters Soil Microbial Community Networks and the Relative Abundance of Fungal Plant Pathogens. Front Microbiol 2021; 12:667394. [PMID: 34122380 PMCID: PMC8189174 DOI: 10.3389/fmicb.2021.667394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022] Open
Abstract
Including pulse crops in cereal-based cropping systems has become a widely accepted and useful agronomic practice to increase crop diversification and biologically fixed nitrogen in agroecosystems. However, there is a lack of knowledge regarding how the intensification of pulses in crop rotations influence soil microbial communities. In this study, we used an amplicon sequencing approach to examine the bulk and rhizosphere soil bacterial and fungal communities from the wheat (Triticum aestivum L.) phase (final year of 4 years rotations) of a long-term pulse intensification field trial in the semi-arid region of the Canadian Prairies. Our results revealed pulse frequency had a minimal impact on microbial α-diversity, but caused a significant shift in the composition of the fungal (rhizosphere and bulk soil) and bacterial (bulk soil) communities. This effect was the most pronounced in the Ascomycete and Bacteroidete communities. Increasing pulse frequency also promoted a higher proportion of fungal pathotrophs in the bulk soil, particularly those putatively identified as plant pathogens. The network analysis revealed that rotations with higher pulse frequency promoted increased competition within the soil microbial networks in the rhizosphere and bulk soil. However, we also detected more negative interactions among the dominant pathotrophic taxa with increased pulse frequency, suggesting higher soil-borne disease potential. These findings highlight the potential drawbacks and reduced sustainability of increasing pulse frequency in crop rotations in semiarid environments.
Collapse
Affiliation(s)
- Tony Yang
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Bianca Evans
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Luke D Bainard
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, Agassiz, BC, Canada
| |
Collapse
|
17
|
Allelic Diversity at Abiotic Stress Responsive Genes in Relationship to Ecological Drought Indices for Cultivated Tepary Bean, Phaseolus acutifolius A. Gray, and Its Wild Relatives. Genes (Basel) 2021; 12:genes12040556. [PMID: 33921270 PMCID: PMC8070098 DOI: 10.3390/genes12040556] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/01/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Some of the major impacts of climate change are expected in regions where drought stress is already an issue. Grain legumes are generally drought susceptible. However, tepary bean and its wild relatives within Phaseolus acutifolius or P. parvifolius are from arid areas between Mexico and the United States. Therefore, we hypothesize that these bean accessions have diversity signals indicative of adaptation to drought at key candidate genes such as: Asr2, Dreb2B, and ERECTA. By sequencing alleles of these genes and comparing to estimates of drought tolerance indices from climate data for the collection site of geo-referenced, tepary bean accessions, we determined the genotype x environmental association (GEA) of each gene. Diversity analysis found that cultivated and wild P. acutifolius were intermingled with var. tenuifolius and P. parvifolius, signifying that allele diversity was ample in the wild and cultivated clade over a broad sense (sensu lato) evaluation. Genes Dreb2B and ERECTA harbored signatures of directional selection, represented by six SNPs correlated with the environmental drought indices. This suggests that wild tepary bean is a reservoir of novel alleles at genes for drought tolerance, as expected for a species that originated in arid environments. Our study corroborated that candidate gene approach was effective for marker validation across a broad genetic base of wild tepary accessions.
Collapse
|
18
|
Oladzad A, González A, Macchiavelli R, de Jensen CE, Beaver J, Porch T, McClean P. Genetic Factors Associated With Nodulation and Nitrogen Derived From Atmosphere in a Middle American Common Bean Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576078. [PMID: 33384700 PMCID: PMC7769817 DOI: 10.3389/fpls.2020.576078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Among grain legume crops, common beans (Phaseolus vulgaris L.) are considered to have poor biological nitrogen (N2) fixation (BNF) capabilities although variation in N2 fixing capabilities exists within the species. The availability of genetic panel varying in BNF capacity and a large-scale single nucleotide polymorphism (SNP) data set for common bean provided an opportunity to discover genetic factors associated with N2 fixation among genotypes in the Middle American gene pool. Using nodulation and percentage of N2-derived from atmosphere (%NDFA) data collected from field trials, at least 11 genotypes with higher levels of BNF capacity were identified. Genome-wide association studies (GWASs) detected both major and minor effects that control these traits. A major nodulation interval at Pv06:28.0-28.27 Mbp was discovered. In this interval, the peak SNP was located within a small GTPase that positively regulates cellular polarity and growth of root hair tips. Located 20 kb upstream of this peak SNP is an auxin-responsive factor AUX/indole acetic auxin (IAA)-related gene involved in auxin transportation during root nodulation. For %NDFA, nitrate (NO3 -) transporters, NRT1:2 and NRT1.7 (Pv02:8.64), squamosa promoter binding transcriptome factor (Pv08:28.42), and multi-antimicrobial extrusion protein (MATE) efflux family protein (Pv06:10.91) were identified as candidate genes. Three additional QTLs were identified on chromosomes Pv03:5.24, Pv09:25.89, and Pv11: 32.89 Mbp. These key candidate genes from both traits were integrated with previous results on N2 fixation to describe a BNF pathway.
Collapse
Affiliation(s)
- Atena Oladzad
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Abiezer González
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Raul Macchiavelli
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | | | - James Beaver
- Department of Agroenvironmental Sciences, University of Puerto Rico, Mayagüez, Puerto Rico
| | - Tim Porch
- USDA-ARS, Tropical Agriculture Research Station, Mayagüez, Puerto Rico
| | - Phillip McClean
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| |
Collapse
|