1
|
Nath P, Bhuyan K, Bhattacharyya DK, Barah P. ETENLNC: An end to end lncRNA identification and analysis framework to facilitate construction of known and novel lncRNA regulatory networks. Comput Biol Chem 2024; 112:108140. [PMID: 38996755 DOI: 10.1016/j.compbiolchem.2024.108140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Long non-coding RNAs (lncRNAs) play crucial roles in the regulation of gene expression and maintenance of genomic integrity through various interactions with DNA, RNA, and proteins. The availability of large-scale sequence data from various high-throughput platforms has opened possibilities to identify, predict, and functionally annotate lncRNAs. As a result, there is a growing demand for an integrative computational framework capable of identifying known lncRNAs, predicting novel lncRNAs, and inferring the downstream regulatory interactions of lncRNAs at the genome-scale. We present ETENLNC (End-To-End-Novel-Long-NonCoding), a user-friendly, integrative, open-source, scalable, and modular computational framework for identifying and analyzing lncRNAs from raw RNA-Seq data. ETENLNC employs six stringent filtration steps to identify novel lncRNAs, performs differential expression analysis of mRNA and lncRNA transcripts, and predicts regulatory interactions between lncRNAs, mRNAs, miRNAs, and proteins. We benchmarked ETENLNC against six existing tools and optimized it for desktop workstations and high-performance computing environments using data from three different species. ETENLNC is freely available on GitHub: https://github.com/EvolOMICS-TU/ETENLNC.
Collapse
Affiliation(s)
- Prangan Nath
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India
| | - Kaveri Bhuyan
- Department of Computer Science and Engineering, Tezpur University, Assam 784028, India; Department of Electrical Engineering, Tezpur University, Assam 784028, India
| | | | - Pankaj Barah
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam 784028, India.
| |
Collapse
|
2
|
Li X, Ke Q, Qu A, Wang J, Zhao J, Xu P, Zhou T. Effects of Gene Alternative Splicing Events on Resistance to Cryptocaryonosis of Large Yellow Croaker (Larimichthys crocea). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:741-753. [PMID: 38969905 DOI: 10.1007/s10126-024-10342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/25/2024] [Indexed: 07/07/2024]
Abstract
Large yellow croaker (L. crocea) is a productive species in marine aquaculture with great economic value in China. However, the sustainable development of large yellow croaker is hampered by various diseases including cryptocaryonosis caused by Cryptocaryon irritans. The genetic regulation processes for cryptocaryonosis in large yellow croaker are still unclear. In this present study, we analyzed differential alternative splicing events between a C. irritans resistance strain (RS) and a commercial strain (CS). We identified 678 differential alternative splicing (DAS) events from 453 genes in RS and 719 DAS events from 500 genes in CS. A set of genes that are specifically alternatively spliced in RS was identified including mfap5, emp1, and trim33. Further pathway analysis revealed that the specifically alternative spliced genes in RS were involved in innate immune responses through the PRR pathway and the Toll and Imd pathway, suggesting their important roles in the genetic regulation processes for cryptocaryonosis in large yellow croaker. This study would be helpful for the studies of the pathogenesis of cryptocaryonosis and dissection of C. irritans resistance for L. crocea.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Hu S, Chen L, Bai Y, He Q, Liu Y, Xu P. Epigenetic mechanisms of lncRNA in response to thermal stress during embryogenesis of allotetraploid Cyprinus carpio. Genomics 2023; 115:110698. [PMID: 37595932 DOI: 10.1016/j.ygeno.2023.110698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Embryogenesis and epigenetic mechanisms of lncRNA may play an important role in the formation of temperature tolerance in allotetraploid Cyprinus carpio. To investigate the response of lncRNA to thermal stress during embryogenesis of C. carpio, transcriptome sequencing was performed on 81 embryo or larva samples from different early development stages and temperatures. We identified 45,097 lncRNAs and analyzed transcriptome variation during embryogenesis. Stage-specific and temperature-specific DE lncRNAs and DEGs were screened. GO and KEGG analysis identified numerous pathways involved in thermal stress. Temperature-specific regulation of cis-/trans-/antisense lncRNAs was analyzed. Interaction network analysis identified 6 hub lncRNAs and many hub genes, such as cdk1 and hsf1. Decreased expression of many essential genes regulated by lncRNAs may lead to the death of embryos at 33 °C. Our findings provide new insights into the regulation of lncRNA in thermal stress response during embryogenesis and contribute to the understanding of environmental adaptation of allotetraploid species.
Collapse
Affiliation(s)
- Shuimu Hu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Lin Chen
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yulin Bai
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Qian He
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yue Liu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Peng Xu
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
4
|
Qu A, Bai Y, Wang J, Zhao J, Zeng J, Liu Y, Chen X, Ke Q, Jiang P, Zhang X, Li X, Xu P, Zhou T. Integrated mRNA and miRNA expression analyses for Cryptocaryon irritans resistance in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2023; 135:108650. [PMID: 36858330 DOI: 10.1016/j.fsi.2023.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. However, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatened the healthy and sustainable development of L. crocea industry. Recently, a new C. irritans resistance strain of L. crocea (RS) has been bred using genomic selection technology in our laboratory work. However, the molecular mechanisms for C. irritans resistance of RS have not been fully understood. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that are post-transcriptional regulators, and they play vital roles in immune process of bony fish. Identification of anti-C.irritans relevant miRNA signatures could, therefore, be of tremendous translational value. In the present study, integrated mRNA and miRNA expression analysis was used to explore C. irritans resistance mechanisms of the L. crocea. RS as well as a control strain (CS) of L. crocea, were artificially infected with C. irritans for 100 h, and their gill was collected at 0 h (pre-infection), 24 h (initial infection), and 72 h (peak infection) time points. The total RNA from gill tissues was extracted and used for transcriptome sequencing and small RNA sequencing. After sequencing, 23,172 known mRNAs and 289 known miRNAs were identified. The differential expression was analyzed in these mRNAs and mRNAs and the interactions of miRNA-mRNA pairs were constructed. KEGG pathway enrichment analyses showed that these putative target mRNAs of differentially expressed miRNAs (DEMs) were enriched in different immune-related pathways after C. irritans infection in RS and CS. Among them, necroptosis was the immune-related pathway that was only significantly enriched at two infection stages of RS group (RS-24 h/RS-0h and RS-72 h/RS-0h). Further investigation indicates that necroptosis may be activated by DEMs such as miR-133a-3p, miR-142a-3p and miR-135c, this promotes inflammation responses and pathogen elimination. These DEMs were selected as miRNAs that could potentially regulate the C. irritans resistance of L. crocea. Though these inferences need to be further verified, these findings will be helpful for the research of the molecular mechanism of C. irritans resistance of L. crocea and miRNA-assisted molecular breeding of aquatic animals.
Collapse
Affiliation(s)
- Ang Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Jiaying Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junjia Zeng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xintong Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Pengxin Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xin Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
5
|
Bai Y, Chen X, Qu A, Liu Y, Zhao J, Ke Q, Pu F, Wu L, Chi H, Gong H, Zhou T, Xu P. Identification and Expression Analysis of LncRNAs Reveal the Immune Mechanism of Visceral White-Nodules Disease Resistance in Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:57-69. [PMID: 36401080 DOI: 10.1007/s10126-022-10181-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Long non-coding RNAs (lncRNAs) have several known functions in fish growth processes and signal transduction, but their possible roles in response to bacterial diseases remain largely unresolved. In this study, we report a comprehensive cold-water bacterial disease-responsive lncRNA expression profile for understanding the transcriptional regulatory mechanisms of visceral white-nodules disease resistance in large yellow croaker. A total of 2534 high-confidence lncRNAs were identified by a rigorous filtering pipeline as a basic sequence set for comparative transcriptional analysis. In addition, a total of 10,200 lncRNA-mRNA pairs with high correlation coefficients were identified by expressions level correlation analysis, including non-redundant 381 DE lncRNAs and 2590 differential expressed genes. MSTRG_11084_1 and MSTRG_20402_1 were linked to a large number of target genes and may be involved in important functions in immune regulation. We further revealed the conserved and idiosyncratic features of the disease response process between the technical control strain (TCS) and the resistant strain (RS). Immune-related pathways were enriched in GO terms and KEGG pathways, among which cytokine-cytokine receptor interaction, MAPK signaling pathway, and NF-kappa B signaling pathway may play a key role in VWND resistance in large yellow croaker. Protein-protein interaction network (PPI) analysis revealed that immune-related target genes such as il-10, met, acta2, myc, cav1, and ntrk1, as well as growth and metabolism-related target genes such as pik3r2, igf1, sc5d, hmgcr, and lss were considered the main hub genes. This study represents the first characterization of lncRNAs involved in VWND resistance in large yellow croaker and provides new clues for elucidating the disease response mechanism of large yellow croaker.
Collapse
Affiliation(s)
- Yulin Bai
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xintong Chen
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ang Qu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Liu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Fei Pu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Linni Wu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Hongshu Chi
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Hui Gong
- Biotechnology Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
6
|
Zhang Y, Shen W, Ding J, Gao X, Wu X, Zhu J. Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1039-1054. [PMID: 36129638 DOI: 10.1007/s10126-022-10158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China.
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Zhang X, Sun B, Bai Y, Canário AVM, Xu X, Li J. Long non-coding RNAs are involved in immune resistance to Aeromonas hydrophila in black carp (Mylopharyngodon piceus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:366-374. [PMID: 35772677 DOI: 10.1016/j.fsi.2022.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/24/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
A growing number of studies identified long non-coding RNAs (lncRNAs) to be closely associated with immune function through the regulation of immune cell differentiation and immune cell effector function. Here we tested whether lncRNAs are involved in immune function in black carp (Mylopharyngodon piceus) through the exposure to Aeromonas hydrophila and analysis of the spleen gene expression response using RNA-seq. A total of 9036 lncRNAs were identified with high confidence. Differential expression analysis identified a total of 3558 DElncRNAs (Differential expression lncRNA) involved in A. hydrophila infection and 4526 target genes corresponding to DElncRNAs. After screening 4526 target genes in the InnateDB database, a total of 150 immunity genes were identified. After GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of the obtained immunity genes, the Toll-like receptor (TLR) signaling pathway, TLR2, TLR3, TLR5, and TLR8 were identified as particularly significant in A. hydrophyla-resistant black carp. At the same time, the Ras signaling pathway was particularly enriched in the spleen of susceptible black carp. Analysis of PPI (protein-protein interaction) networks of the obtained immune genes identified SRC (SRC Proto-Oncogene), MYD88 (Myeloid differentiation primary response 88), MAPK3 (Mitogen-Activated Protein Kinase 3), MYC (MYC Proto-Oncogene) as main hub genes regulated by lncRNA and possibly mediating a mechanism of susceptibility to bacteria. These results establish a functional role of lncRNAs and a mechanistic base for the immune response in black carp resistant to A. hydrophila.
Collapse
Affiliation(s)
- Xueshu Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Bingyan Sun
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yulin Bai
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China
| | - Adelino V M Canário
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; CCMAR/CIMAR Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
8
|
Qu A, Bai Y, Zhang X, Zeng J, Pu F, Wu L, Xu P, Zhou T. Tissue-Specific Analysis of Alternative Splicing Events and Differential Isoform Expression in Large Yellow Croaker (Larimichthys crocea) After Cryptocaryon irritans Infection. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:640-654. [PMID: 35624193 DOI: 10.1007/s10126-022-10133-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. Recently, cryptocaryonosis caused by Cryptocryon irritans infection has brought huge economic losses and threatens the healthy and sustainable development of the L. crocea industry. However, the molecular mechanism and regulation process for L. crocea resistance to C. irritans infection has not been fully researched. Alternative splicing (AS) is an important post-transcriptional regulatory mechanism that allows cells to produce transcriptional and proteomic diversity. The results of AS are tissue dependent, and the expression of tissue-specific transcription subtype genes is determined by AS and transcriptional regulation. However, studies on the tissue specificity of AS events in L. crocea following infection with C. irritans have not been performed. In this study, the L. crocea were artificially infected with C. irritans; their skin and gill were collected at 0 h, 24 h, 48 h, 72 h, and 96 h post infection. After sequencing and differential expression analysis, a set of 452, 692, 934, 711, 534, and 297 differential alternative splicing (DAS) events were identified in 0 h, 12 h, 24 h, 48 h, 72 h, and 96 h post infection respectively. Furthermore, 4160 differentially expressed isoforms (DEIs) and 4209 DEI genes were identified from all time point groups. GO enrichment and pathway analysis indicated that many genes of DAS and DEIs were rich in immune-related GO terms and KEGG pathways, such as the Toll and Imd signaling pathway, NOD-like receptor signaling pathway, TNF signaling pathway, and TNF signaling pathway. Among hub DEI genes, alternative splicing-related genes (cwc25, prpf8, and sf3a3), skin function-related gene (fa2h), and oxygen deprivation-related gene (hyo1) were found in DEI genes. This study provided insight into the temporal change of DAS and DEIs between skin and gill of L. crocea against C. irritans infection and revealed that these differences might play immune-related roles in the infection process.
Collapse
Affiliation(s)
- Ang Qu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Xinyi Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Junjia Zeng
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Linni Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China.
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Xiao Q, Lin Y, Li H, Chen Y, Wei W, Li P, Chen L. Transcriptome sequencing reveals the differentially expressed lncRNAs and mRNAs in response to cold acclimation and cold stress in Pomacea canaliculata. BMC Genomics 2022; 23:382. [PMID: 35590244 PMCID: PMC9121591 DOI: 10.1186/s12864-022-08622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background Tolerance of low temperature has a significant impact on survival and expansion of invasive snail Pomacea canalicuata. Cold acclimation can enhance cold tolerance of Pomacea canalicuata. To elucidate the molecular mechanism of P. canaliculata’s responses to cold acclimation and cold stress, a high-throughput transcriptome analysis of P. canaliculata was performed, and gene expression following artificial cold acclimation and then cold stress at 0 °C for 24 h was compared using RNA sequencing. Results Using the Illumina platform, we obtained 151.59 G subreads. A total of 5,416 novel lncRNAs were identified, and 3166 differentially expressed mRNAs and 211 differentially expressed lncRNAs were screened with stringent thresholds. The potential antisense, cis and trans targets of lncRNAs were predicted. Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that many target genes were involved in proteasome, linoleic acid metabolism and retinol metabolism under cold acclimation. The lncRNA of P. canaliculata could participate in cold acclimation by regulating the expression of E3 ubiquitin protein ligase, 26S proteasome non-ATPase dependent regulation subunit, glutathione S-transferase, sodium/glucose cotransporter and cytochrome P450. Conclusions These results broaden our understanding of cold acclimation and cold stress associated lncRNAs and mRNAs, and provide new insights into lncRNA mediated regulation of P. canaliculata cold acclimation and cold stress response. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08622-5.
Collapse
Affiliation(s)
- Qi Xiao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.,Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Youfu Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Hong Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Chen
- College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Wei Wei
- College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 210013, China
| | - Peng Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| | - Lian Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Identification of Immune-Related lncRNA Pairs and Construction and Validation of a New Prognostic Signature of Colon Cancer. Can J Gastroenterol Hepatol 2022; 2022:5827544. [PMID: 35399646 PMCID: PMC8986404 DOI: 10.1155/2022/5827544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND More and more evidence has shown that immune-related long noncoding ribonucleic acid (irlncRNAs) is a potential prognostic factor for colon cancer. The relevant gene pair pattern can improve the sensitivity of the prognostic model. Therefore, our present study aimed to identify irlncRNA Pairs and construct and validate a new prognostic signature in colon cancer. METHODS We downloaded the expression matrix of mRNA and lncRNA of patients with colon cancer and their clinical information from the public TCGA database. We obtained immune genes from the ImmPort database. Coexpression analysis was performed to identify irlncRNAs. We built an irlncRNA pair matrix by comparing the expression levels of each lncRNA pair in a cycle. Univariate Cox regression analysis, LASSO penalized regression analysis, and multivariate Cox regression analysis were performed to determine the final variables to construct the prognostic risk score model (a new signature). We draw the receiver operating characteristic (ROC) curves of the signature and clinical characteristics and determine the optimal cutoff value by the optimal Akaike Information Criterion (AIC) value. Based on the optimal cutoff value of the ROC curve of the signature, colon cancer patients were divided into the high- and low-risk groups. Then, the signature was evaluated by clinicopathological features, tumor-infiltrating immune cells, checkpoint-related biomarkers, targeted therapy, and chemotherapy. RESULTS We identified 8 lncRNA pairs including AC103740.1|LEF1-AS1, LINC02391|AC053503.5, WWC2-AS2|AL355916.2, AC104090.1|NEURL1-AS1, AC099524.1|AL161908.1, AC074011.1|AL078601.2, AL355916.2|LINC01723, and AP003392.4|LINC00598 from 71 differently expressed irlncRNAs. We constructed a prognostic risk score model (a new signature) using these optimal eight irlncRNA pairs. ROC curve analysis revealed that the highest AUC value of the signature was 0.776 at 1 year, with the optimal cutoff value of 1.283. Our present study also showed that the constructed signature could accurately identify adverse survival outcomes, prognostic clinicopathological features, and specify tumor invasion status. The expression of immune checkpoint-related genes and chemical drug sensitivity were related to different risk groups. CONCLUSION In our present study, we constructed a new irlncRNA signature of colon cancer based on the irlncRNA pairs instead of the special expression level of lncRNA. We found this signature had not only good prognostic value but also certain clinical value, which might provide a new insight into the treatment and prognosis of colon cancer.
Collapse
|
11
|
Long noncoding RNA MIR2187HG suppresses TBK1-mediated antiviral signaling through deriving miR-2187-3p in teleost fish. J Virol 2021; 96:e0148421. [PMID: 34643431 DOI: 10.1128/jvi.01484-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) function as microregulatory factors that influence gene expression after a variety of pathogenic infection, which have been extensively studied in the past few years. Although less attention has been paid to lncRNAs in lower vertebrates than in mammals, current studies reveals that lncRNAs plays a vital role in fish stimulated by pathogens. Here, we discovered a new lncRNA, termed as MIR2187HG, which can function as a precursor of a small RNA miR-2187-3p with regulatory functions in miiuy croaker (Miichthys miiuy). Upon Siniperca chuatsi rhabdovirus (SCRV) virus infection, the expression levels of MIR2187HG were remarkably enhanced. Elevated MIR2187HG expression can act as a pivotally negative regulator that participates in the innate immune response of teleost fish to inhibit the intracellular TANK-binding kinase 1 (TBK1)-mediated antiviral signaling pathways, which can effectively avoid excessive immunity. In addition, we found that the SCRV virus could also utilize MIR2187HG to enhance its own number. Our results not only provide evidence regarding the involvement of the lncRNAs in response to anti-viruses in fish, but also broaden our understanding of the function of lncRNAs as precursor miRNA in teleost fish for the first time. Importance: SCRV infection upregulates MIR2187HG levels, which in turn suppresses SCRV-triggered type I interferon production, thus promoting viral replication in miiuy croaker. Notably, MIR2187HG regulates the release of miR-2187-3p, and TBK1 is a target of miR-2187-3p. MIR2187HG could obtain the function from miR-2187-3p to inhibit TBK1 expression and subsequently modulate TBK1-mediated NF-κB and IRF3 signaling. The collective results suggest that the novel regulation mechanism of TBK1-mediated antiviral response during RNA viral infection was regulated by MIR2187HG. Therefore, a new regulation mechanism for lncRNAs to regulate antiviral immune responses in fish is proposed.
Collapse
|