1
|
Hosseini M, Hammami B, Kazemi M. Identification of potential diagnostic biomarkers and therapeutic targets for endometriosis based on bioinformatics and machine learning analysis. J Assist Reprod Genet 2023; 40:2439-2451. [PMID: 37555920 PMCID: PMC10504186 DOI: 10.1007/s10815-023-02903-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023] Open
Abstract
PURPOSE Endometriosis (EMs) is a major gynecological condition in women. Due to the absence of definitive symptoms, its early detection is very challenging; thus, it is crucial to find biomarkers to ease its diagnosis and therapy. Here, we aimed to identify potential diagnostic and therapeutic targets for EMs by constructing a regulatory network and using machine learning approaches. METHODS Three Gene Expression Omnibus (GEO) datasets were merged, and differentially expressed genes (DEGS) were identified after preprocessing steps. Using the DEGs, a transcription factor (TF)-mRNA-miRNA regulatory network was constructed, and hub genes were detected based on four different algorithms in CytoHubba. The hub genes were used to build a GaussianNB diagnostic model and also in docking analysis that were performed using Discovery Studio and AutoDock Vina software. RESULTS A total of 119 DEGs were identified between EMs and non-EMs samples. A regulatory network consisting of 52 mRNAs, 249 miRNAs, and 37 TFs was then constructed. The diagnostic model was introduced using the hub genes selected from the network (GATA6, HMOX1, HS3ST1, NFASC, and PTGIS) that its area under the curve (AUC) was 0.98 and 0.92 in the training and validation cohorts, respectively. Based on docking analysis, two chemical compounds, rofecoxib and retinoic acid, had potential therapeutic effects on EMs. CONCLUSION In conclusion, this study identified potential diagnostic and therapeutic targets for EMs which demand more experimental confirmations.
Collapse
Affiliation(s)
- Maryam Hosseini
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Hammami
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Kazemi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Reproductive Sciences and Sexual Health Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Abbaszadeh M, Karimi M, Rajaei S. The landscape of non-coding RNAs in the immunopathogenesis of Endometriosis. Front Immunol 2023; 14:1223828. [PMID: 37675122 PMCID: PMC10477370 DOI: 10.3389/fimmu.2023.1223828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
Endometriosis is a complex disorder that is characterized by the abnormal growth of endometrial-like tissue outside the uterus. It is associated with chronic inflammation, severe pelvic pain, infertility, and significantly reduced quality of life. Although the exact mechanism of endometriosis remains unknown, inflammation and altered immunity are considered key factors in the immunopathogenesis of the disorder. Disturbances of immune responses result in reduced clearance of regurgitated endometrial cells, which elicits oxidative stress and progression of inflammation. Proinflammatory mediators could affect immune cells' recruitment, fate, and function. Reciprocally, the activation of immune cells can promote inflammation. Aberrant expression of non-coding RNA (ncRNA) in patient and animal lesions could be suggestive of their role in endometriosis establishment. The engagement of these RNAs in regulating diverse biological processes, including inflammatory responses and activation of inflammasomes, altered immunity, cell proliferation, migration, invasion, and angiogenesis are widespread and far-reaching. Therefore, ncRNAs can be identified as a determining candidate regulating the inflammatory responses and immune system. This review aims in addition to predict the role of ncRNAs in the immunopathogenesis of endometriosis through regulating inflammation and altered immunity based on previous studies, it presents a comprehensive view of inflammation role in the pathogenesis of endometriosis.
Collapse
Affiliation(s)
| | | | - Samira Rajaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhao S, Zhang B, Yuan H, Yin Y, Qi S, Li W, Wu X, Yaling F. IGF2BP2 promotes the progression of ovarian endometriosis by regulating m6A-modified MEIS2 and GATA6. Int J Biochem Cell Biol 2022; 152:106296. [PMID: 36113831 DOI: 10.1016/j.biocel.2022.106296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/25/2022] [Accepted: 09/11/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND m6A-RNA modification mediated by the N6-methyladenosine RNA methylation-related molecule methyltransferase-like 3 has been implicated in the progression of endometriosis. However, the functions of other m6A regulators, especially in ovarian endometriosis, remain unknown. METHODS Three datasets (GSE7305, GSE7307, and GSE37837) with diagnosed ovarian endometriosis were extracted from the Gene Expression Omnibus database. Using bioinformatics methods such as Weighted Gene Co-expression Network Analysis, Gene Ontology analysis, protein-protein interaction, and correlation, hub genes were identified. Using dot blot and N6-methyladenosine-IP-qPCR, the total and individual N6-methyladenosine gene levels were quantified. On clinical ovarian ectopic and eutopic endometrium tissues, N6-methyladenosine RNA methylation sequencing was performed. To authenticate protein localization and expression level, immunohistochemical staining and western blot were conducted, respectively. The database Connectivity Map was used to predict small molecules with potential therapeutic effects. RESULTS In ovarian endometriosis, the N6-methyladenosine "reader" molecule IGF2BP2 and related target genes MEIS2 and GATA6 were highly expressed. IGF2BP2 promoted the proliferation, migration, and invasion of ectopic endometrial stromal cells by stabilizing the mRNA of MEIS2 and GATA6. Synergistically, METTL3 and IGF2BP2 increased the N6-methyladenosine methylation of MEIS2 and GATA6. We developed five molecules (Mercaptopurine, MK-886, CP-863187, Canadine, and Securinine) that could be used to treat ovarian endometriosis based on IGF2BP2. CONCLUSION Our findings provided additional support for a systematized understanding of the role of N6-methyladenosine RNA methylation in endometriosis and confirmed for the first time the mechanism of IGF2BP2 in promoting ovarian endometriosis. This provides the molecular foundation for potential future therapies for ovarian endometriosis. DATA AVAILABILITY The data used to support the findings of this study are available from the corresponding author upon request.
Collapse
Affiliation(s)
- Shaojie Zhao
- Department of Gynaecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Bing Zhang
- Department of Gynaecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Hua Yuan
- Department of Gynaecology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Yongxiang Yin
- Department of Pathology, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Suwan Qi
- Department of Women Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Wenjuan Li
- Department of Women Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Xiadi Wu
- Department of Women Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China
| | - Feng Yaling
- Department of Women Health Care, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, Jiangsu Province 214002, PR China.
| |
Collapse
|
4
|
Wan Y, Gu C, Kong J, Sui J, Zuo L, Song Y, Chen J. Long noncoding RNA ADAMTS9-AS1 represses ferroptosis of endometrial stromal cells by regulating the miR-6516-5p/GPX4 axis in endometriosis. Sci Rep 2022; 12:2618. [PMID: 35173188 PMCID: PMC8850595 DOI: 10.1038/s41598-022-04963-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Endometriosis (EMs) is one of the most frequent diseases of reproductive-age women and is characterized by the growth of endometrial tissues beyond the uterus. The enhanced proliferative and migratory potential of endometrial stromal cells (ESCs) plays an important role in the progression of EMs. Mounting studies have demonstrated that long noncoding RNAs (lncRNAs) exert an important role in regulating the development and progression of EMs. Given the aberrant expression of lncRNA ADAMTS9-AS1 in ectopic endometrium (ecEM), we investigated the biological effect of ADAMTS9-AS1 on ESC proliferation and migration and explored the underlying mechanism. The current data showed that ADAMTS9-AS1 expression was significantly upregulated in ecEM compared with eutopic endometrium (euEM) in patients with EMs and in a murine model of EMs. Functionally, ADAMTS9-AS1 knockdown in ectopic ESCs (EESCs) decreased cell viability and migration, whereas ADAMTS9-AS1 overexpression in normal ESCs (NESCs) enhanced cell viability and migration. More importantly, the effect of ADAMTS9-AS1 inhibition on decreasing ESC viability was significantly blocked by ferrostatin-1 (Fer-1, a ferroptosis inhibitor), and ADAMTS9-AS1 overexpression repressed erastin (a ferroptosis activator)-induced cell death. Furthermore, the regulatory role of ADAMTS9-AS1 in ferroptosis was defined and evidenced by increased reactive oxygen species (ROS) levels and malonyl dialdehyde (MDA) content and decreased expression of glutathione peroxidase 4 (GPX4) after ADAMTS9-AS1 inhibition. Mechanistically, ADAMTS9-AS1 functioned as a competing endogenous RNA (ceRNA) by sponging miR-6516-5p to derepress the expression of GPX4, the critical repressor of ferroptosis. Taken together, these results demonstrate that upregulated ADAMTS9-AS1 accelerates ESC proliferation and migration by regulating miR-6516-5p/GPX4-dependent ferroptosis and may be a potential target for the treatment of EMs.
Collapse
Affiliation(s)
- Yiting Wan
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Cancan Gu
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Jueying Kong
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Jin Sui
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Ling Zuo
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China
| | - Yanhua Song
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China.
| | - Jing Chen
- Department of Gynecology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, No. 274 Middle Zhijiang Road, Shanghai, 200071, China.
| |
Collapse
|
5
|
Li J, Guan X, Xu C, Jia J, Zhang L, Han H. miR-206 Targets MALAT1 to Suppress Cell Progression of Ectopic Endometrial Stromal Cells in Endometriosis. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8094385. [PMID: 35126948 PMCID: PMC8813257 DOI: 10.1155/2022/8094385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND miR-206 was reported to be a tumor suppressor in bladder cancer. In this study, we explore the expression and function of miR-206 in endometriosis (EM). METHODS 40 EM patients undergoing total hysterectomy were selected as the experimental group. RT-qPCR assay was adopted to detect the expression of MALAT1 and miR-206 in EM. Cell proliferation was detected by EdU incorporation and colony formation assay. Cell migration and invasion viability of ESCs were examined by transwell assay and wound healing assay. Flow cytometry was carried out to assess cell apoptosis of ESCs. The protein expressions of Bcl-2 and Bax were examined by western blot assay. The relationship between miR-206 and MALAT1 was verified by the dual-luciferase reporter assay and RNA pull-down assay. RESULTS In this work, miR-206 was found to be downregulated in EM. Functional experiments displayed that miR-206 mimic repressed cell proliferation, migration, and invasion of ESCs and promoted cell apoptosis of ESCs. Furthermore, miR-206 mimic reduced the expression of Bcl-2 but enhanced the expression of Bax. MALAT1 was found to be upregulated in EM. Furthermore, MALAT1 was indicated to be a target of miR-206. Additionally, MALAT1 was found to alleviate the influence of miR-206 on cell progression of ESCs. Furthermore, miR-206 inhibited tumor growth in vivo. CONCLUSION This study indicated that miR-206 inhibited cell progression by regulating MALAT1 in EM. Hence, miR-206 was suggested to be a possible target for EM treatment.
Collapse
Affiliation(s)
- Jinggang Li
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining 272100, China
| | - Xiaofei Guan
- Depatment of Obstetrics, Pingdu People's Hospital, Qingdao 266700, China
| | - Chongyun Xu
- Department of Obstetrics, Wulian Country People's Hospital, Rizhao 262300, China
| | - Jingyun Jia
- Department of Obstetrics, Chifeng City Center Hospital Ningcheng Country, Chifeng 024200, China
| | - Ling Zhang
- Record Room, Gaoqing Country People's Hospital, Zibo 256300, China
| | - Hui Han
- Department of Gynecology, Affiliated Hospital of Jining Medical University, Jining 272100, China
| |
Collapse
|
6
|
Shi L, Wei X, Wu B, Yuan C, Li C, Dai Y, Chen J, Zhou F, Lin X, Zhang S. Molecular Signatures Correlated With Poor IVF Outcomes: Insights From the mRNA and lncRNA Expression of Endometriotic Granulosa Cells. Front Endocrinol (Lausanne) 2022; 13:825934. [PMID: 35295989 PMCID: PMC8919698 DOI: 10.3389/fendo.2022.825934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/01/2022] [Indexed: 11/18/2022] Open
Abstract
The outcomes of in vitro fertilization (IVF) for endometriotic women are significantly worse than for patients without ovarian endometriosis (OEM), as shown by fewer retrieved oocytes. However, the exact pathophysiological mechanism is still unknown. Thus, we conducted a prospective study that analyzed mRNA and lncRNA transcriptome between granulosa cells (GCs) from patients with fewer retrieved oocytes due to OEM and GCs from controls with male factor (MF) infertility using an RNA sequencing approach. We found a group of significantly differentially expressed genes (DEGs), including NR5A2, MAP3K5, PGRMC2, PRKAR2A, DEPTOR, ITGAV, KPNB1, GPC6, EIF3A, and SMC5, which were validated to be upregulated and negatively correlated with retrieved oocyte numbers in GCs of patients with OEM, while DUSP1 demonstrated the opposite. The molecular functions of these DEGs were mainly enriched in pathways involving mitogen-activated protein kinase (MAPK) signaling, Wnt signaling, steroid hormone response, apoptosis, and cell junction. Furthermore, we performed lncRNA analysis and identified a group of differentially expressed known/novel lncRNAs that were co-expressed with the validated DEGs and correlated with retrieved oocyte numbers. Co-expression networks were constructed between the DEGs and known/novel lncRNAs. These distinctive molecular signatures uncovered in this study are involved in the pathological regulation of ovarian reserve dysfunction in OEM patients.
Collapse
Affiliation(s)
- Libing Shi
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xianjiang Wei
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Bingbing Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Chunhui Yuan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| | - Chao Li
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Yongdong Dai
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Jianmin Chen
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Feng Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Xiang Lin
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine; Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang,
| |
Collapse
|
7
|
Hudson QJ, Proestling K, Perricos A, Kuessel L, Husslein H, Wenzl R, Yotova I. The Role of Long Non-Coding RNAs in Endometriosis. Int J Mol Sci 2021; 22:11425. [PMID: 34768856 PMCID: PMC8583837 DOI: 10.3390/ijms222111425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023] Open
Abstract
Endometriosis is a chronic gynecological disorder affecting the quality of life and fertility of many women around the world. Heterogeneous and non-specific symptoms may lead to a delay in diagnosis, with treatment options limited to surgery and hormonal therapy. Hence, there is a need to better understand the pathogenesis of the disease to improve diagnosis and treatment. Long non-coding RNAs (lncRNAs) have been increasingly shown to be involved in gene regulation but remain relatively under investigated in endometriosis. Mutational and transcriptomic studies have implicated lncRNAs in the pathogenesis of endometriosis. Single-nucleotide polymorphisms (SNPs) in lncRNAs or their regulatory regions have been associated with endometriosis. Genome-wide transcriptomic studies have identified lncRNAs that show deregulated expression in endometriosis, some of which have been subjected to further experiments, which support a role in endometriosis. Mechanistic studies indicate that lncRNAs may regulate genes involved in endometriosis by acting as a molecular sponge for miRNAs, by directly targeting regulatory elements via interactions with chromatin or transcription factors or by affecting signaling pathways. Future studies should concentrate on determining the role of uncharacterized lncRNAs revealed by endometriosis transcriptome studies and the relevance of lncRNAs implicated in the disease by in vitro and animal model studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Iveta Yotova
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria; (Q.J.H.); (K.P.); (A.P.); (L.K.); (H.H.); (R.W.)
| |
Collapse
|