1
|
Akar HT, Akduman H, Kolkıran A, Taşadelen E, Aycan N. The rare reason for massive lactic aciduria and mitochondrial disorders: combined oxidative phosphorylation deficiency type 23 (COXPD23). Z Geburtshilfe Neonatol 2024. [PMID: 39577856 DOI: 10.1055/a-2465-3661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Mitochondrial respiratory chain dysfunction and impaired oxidative phosphorylation are rare but significant causes of mitochondrial diseases in children, presenting with diverse clinical features. Combined oxidative phosphorylation deficiency type 23 (COXPD23), an autosomal recessive disorder due to GTPBP3 gene mutations, typically manifests as lactic acidosis, hypertrophic cardiomyopathy, and encephalopathy. This case report describes a male infant born at 35 weeks gestation, who exhibited severe lactic aciduria and hypotonia but no cardiomyopathy, which is atypical for COXPD23. Genetic analysis revealed a novel homozygous missense variant in the GTPBP3 gene. Despite intensive metabolic and supportive treatments, the patient's condition worsened, leading to death on the 23rd day. This case emphasizes the need to consider mitochondrial cytopathies in neonates with persistent metabolic acidosis and hyperlactatemia and highlights the importance of early genetic screening for accurate diagnosis and management.
Collapse
Affiliation(s)
- Halil Tuna Akar
- Department of Pediatric Metabolism, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Hasan Akduman
- Department of Neonatology, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Abdülkerim Kolkıran
- Department of Pediatric Genetics, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Elifcan Taşadelen
- Department of Medical Genetics, TC Saglik Bakanligi Ankara Etlik Sehir Hastanesi, Ankara, Turkey
| | - Nur Aycan
- Department of Neonatology, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
2
|
Tong Q, Miao Y, Yin H. Echocardiographic manifestations of mitochondrial disease with GTPBP3 gene mutations: A case report. Medicine (Baltimore) 2024; 103:e37847. [PMID: 38701254 PMCID: PMC11062751 DOI: 10.1097/md.0000000000037847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
RATIONALE Mitochondrial diseases are a group of disorders in which mutations in mitochondrial DNA or nuclear DNA lead to dysfunctional oxidative phosphorylation of cells, with mutations in mitochondrial DNA being the most common cause of mitochondrial disease, and mutations in nuclear genes being rarely reported. The echocardiographic findings of mitochondrial diseases with nuclear gene mutations in children's hearts are even rarer. Even more valuable is that we followed up the patient for 4 years and dynamically observed the cardiac echocardiographic manifestations of mitochondrial disease. Provide ideas for the clinical diagnosis and prognosis of mitochondrial diseases. PATIENT CONCERNS The patient was seen in the pediatric outpatient clinic for poor strength and mental retardation. echocardiography: mild left ventricular (LV) enlargement and LV wall thickening. Nuclear genetic testing: uanosine triphosphate binding protein 3 (GTPBP3) gene mutation. Diagnosis of mitochondrial disease. DIAGNOSES Mitochondrial disease with GTPBP3 gene mutations. OUTCOMES After receiving drug treatment, the patient exhibited a reduction in lactate levels, an enhanced physical condition compared to prior assessments, and demonstrated average intellectual development. LESSONS SUBSECTIONS For echocardiographic indications of LV wall thickening and LV enlargement, one needs to be alert to the possibility of hereditary cardiomyopathy, especially in children.
Collapse
Affiliation(s)
- Qiaoli Tong
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yajing Miao
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongning Yin
- Department of Cardiac Ultrasound, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Wang Y, He J, Dong F, Shou W, Feng X, Yang Y, Li C, Wang J, Li B, Xiao S. A novel mutation in GTPBP3 causes combined oxidative phosphorylation deficiency 23 by affecting pre-mRNA splicing. Heliyon 2024; 10:e27199. [PMID: 38515655 PMCID: PMC10955198 DOI: 10.1016/j.heliyon.2024.e27199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/23/2024] Open
Abstract
Background Combined Oxidative Phosphorylation Deficiency 23 (COXPD23) is a rare mitochondrial disease caused by mutations in the GTPBP3 gene. The rare incidence of the disease and the high clinical heterogeneity pose challenges in making a precise diagnosis. Investigations into the rare COXPD23 patients are of pathophysiological and etiological value. In this study, we investigated the genotype-phenotype relationship in a COXPD23 patient from a Manchu family, with GTPBP3 mutations. Methods Routine physical examinations, laboratory assays and imaging analyses were performed. The metabolic profiles of amino acids in blood, acylcarnitine in blood and organic acids in urine were used to determine the presence of inherited metabolic diseases. Genetic variations in the family were investigated using whole-exome sequencing and Sanger sequencing. Splicing disruption by a mutation was predicted and verified using a minigene assay. Results The patient presented with severe lactic acidosis, neurological symptoms, multiple symmetrical lesions in the brain and serious mitochondrial energy metabolism disturbances. The c.689A > C (p.Q230P) and c.809-1_809delinsA compound heterozygous mutations were detected in GTPBP3. The novel c.809-1_809delinsA mutation was located at the splicing site of exon 7 and intron 6 and multiple tools predicted that it would disrupt the normal splicing. The minigene assay proved that the novel mutation resulted in two aberrant transcripts that created premature termination codons. Conclusions The clinical manifestations, brain imaging change, mitochondrial metabolism disturbances and the detection and validation of the GTPBP3 mutations expand the profile of COXPD23 and the pathogenic mutation spectrum. Our study improves the understanding of the pathophysiology and etiology of COXPD23.
Collapse
Affiliation(s)
- Yanjun Wang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Juan He
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Fangling Dong
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Weihua Shou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, China
| | - Xingxing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Ya Yang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Cuifen Li
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Jingjing Wang
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Bin Li
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| | - Shufang Xiao
- Pediatric Intensive Care Unit, Kunming Children's Hospital, Children's Hospital Affiliated to Kunming Medical University, Kunming, China
| |
Collapse
|
4
|
Nardecchia F, Carrozzo R, Innocenti A, Torraco A, Zaccaria V, Rizza T, Pisani F, Bertini E, Leuzzi V. Biallelic variants in GTPBP3: New patients, phenotypic spectrum, and outcome. Ann Clin Transl Neurol 2024; 11:819-825. [PMID: 38327089 DOI: 10.1002/acn3.51980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 12/03/2023] [Indexed: 02/09/2024] Open
Abstract
INTRODUCTION COXPD23 is a rare mitochondrial disease caused by biallelic pathogenic variants in GTPBP3. We report on two siblings with a mild phenotype. CASE REPORTS The young boy presented with global developmental delay, ataxic gait and upper limbs tremor, and the older sister with absence seizures and hypertrophic cardiomyopathy. Respiratory chain impairment was confirmed in muscle. DISCUSSION Reviewed cases point toward clustering around two prevalent phenotypes: an early-onset presentation with severe fatal encephalopathy and a late milder presentation with global developmental delay/ID and cardiopathy, with the latter as, is the main feature. Our patients showed an intermediate phenotype with intrafamilial variability.
Collapse
Affiliation(s)
- Francesca Nardecchia
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Alice Innocenti
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Alessandra Torraco
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Valerio Zaccaria
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Teresa Rizza
- Unit of Cell Biology and Diagnosis of Mitochondrial Disorders, Laboratory of Medical Genetics, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Enrico Bertini
- Neuromuscular Disorders Research Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
5
|
Modopathies Caused by Mutations in Genes Encoding for Mitochondrial RNA Modifying Enzymes: Molecular Mechanisms and Yeast Disease Models. Int J Mol Sci 2023; 24:ijms24032178. [PMID: 36768505 PMCID: PMC9917222 DOI: 10.3390/ijms24032178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
In eukaryotes, mitochondrial RNAs (mt-tRNAs and mt-rRNAs) are subject to specific nucleotide modifications, which are critical for distinct functions linked to the synthesis of mitochondrial proteins encoded by mitochondrial genes, and thus for oxidative phosphorylation. In recent years, mutations in genes encoding for mt-RNAs modifying enzymes have been identified as being causative of primary mitochondrial diseases, which have been called modopathies. These latter pathologies can be caused by mutations in genes involved in the modification either of tRNAs or of rRNAs, resulting in the absence of/decrease in a specific nucleotide modification and thus on the impairment of the efficiency or the accuracy of the mitochondrial protein synthesis. Most of these mutations are sporadic or private, thus it is fundamental that their pathogenicity is confirmed through the use of a model system. This review will focus on the activity of genes that, when mutated, are associated with modopathies, on the molecular mechanisms through which the enzymes introduce the nucleotide modifications, on the pathological phenotypes associated with mutations in these genes and on the contribution of the yeast Saccharomyces cerevisiae to confirming the pathogenicity of novel mutations and, in some cases, for defining the molecular defects.
Collapse
|
6
|
Stenton SL, Zou Y, Cheng H, Liu Z, Wang J, Shen D, Jin H, Ding C, Tang X, Sun S, Han H, Ma Y, Zhang W, Jin R, Wang H, Sun D, Lv JL, Prokisch H, Fang F. Leigh syndrome: a study of 209 patients at the Beijing Children's Hospital. Ann Neurol 2022; 91:466-482. [PMID: 35094435 DOI: 10.1002/ana.26313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Sarah L. Stenton
- Institute of Human Genetics, School of Medicine Technical University of Munich Munich Germany
- Institute of Neurogenomics Helmholtz Zentrum München Neuherberg Germany
| | - Ying Zou
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Hua Cheng
- Image Center, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Zhimei Liu
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Junling Wang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Danmin Shen
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Hong Jin
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Changhong Ding
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Xiaolu Tang
- Image Center, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Suzhen Sun
- Department of Neurology Children's Hospital of Hebei Province Shijiazhuang China
| | - Hong Han
- Department of Neurology Children's Hospital of Shanxi Province Taiyuan China
| | - Yanli Ma
- Department of Neurology Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou China
| | - Weihua Zhang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
- Department of Neurology Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital Zhengzhou China
| | - Ruifeng Jin
- Department of Neurology Qilu Children's Hospital of Shandong University Jinan China
| | - Hua Wang
- Department of Pediatrics Shengjing Hospital of China Medical University Shenyang China
| | - Dan Sun
- Department of Neurology Wuhan Children's Hospital Wuhan China
| | - Jun Lan Lv
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine Technical University of Munich Munich Germany
- Institute of Neurogenomics Helmholtz Zentrum München Neuherberg Germany
| | - Fang Fang
- Department of Neurology, National Center for Children's Health, Beijing Children's Hospital Capital Medical University Beijing China
| |
Collapse
|