1
|
Wu Y, Yang K, Wen X, Sun Y. Genetic Differentiation and Relationship among Castanopsis chinensis, C. qiongbeiensis, and C. glabrifolia (Fagaceae) as Revealed by Nuclear SSR Markers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1486. [PMID: 38891296 PMCID: PMC11175008 DOI: 10.3390/plants13111486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
Castanopsis chinensis (Spreng.) Hance is widespread in the subtropical forests of China. Castanopsis qiongbeiensis G.A. Fu and Castanopsis glabrifolia J. Q. Li & Li Chen are limited to the coastal beaches of Wenchang county in the northeast of Hainan Island, and have similar morphological characteristics to C. chinensis. It is supposed that C. qiongbeiensis and C. glabrifolia are closely related to C. chinensis. In the present study, the genetic differentiation, gene flow, and genetic relationship of C. chinensis, C. qiongbeiensis, and C. glabrifolia were investigated by using 15 nuclear microsatellite markers; a total of 308 individuals from 17 populations were sampled in the three species. The allelic variation of nuclear microsatellites revealed moderate but significant genetic differentiation (FCT = 0.076) among C. chinensis, C. qiongbeiensis, and C. glabrifolia, and genetic differentiation between C. chinensis and C. glabrifolia was larger than that between C. chinensis and C. qiongbeiensis. Demographic simulations revealed unidirectional gene flow from C. chinensis to C. glabrifolia and C. qiongbeiensis, which highlight dispersal from mainland to island. The isolation effect of Qiongzhou Strait increased the genetic differentiation of species on both sides of the strait; however, the differentiation was diminished by gene flow that occurred during the historical period when Hainan Island was connected to mainland China. Our results supported the argument that C. glabrifolia should be considered an independent species and argued that C. qiongbeiensis should be regarded as an incipient species and independent conservation unit.
Collapse
Affiliation(s)
- Yang Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (K.Y.)
| | - Kai Yang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (K.Y.)
| | - Xiangying Wen
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Ye Sun
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (K.Y.)
| |
Collapse
|
2
|
Madeira AG, Tsuda Y, Nagano Y, Iwasaki T, Zucchi MI, Kajita T, Mori GM. The role of oceanic currents in the dispersal and connectivity of the mangrove Rhizophora mangle on the Southwest Atlantic region. Mol Ecol Resour 2023. [PMID: 37173824 DOI: 10.1111/1755-0998.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Dispersal is a crucial mechanism to living beings, allowing them to reach new resources such that populations and species can occupy new environments. However, directly observing the dispersal mechanisms of widespread species can be costly or even impractical, which is the case for mangrove trees. The influence of ocean currents on mangrove dispersal is increasingly evident; however, few studies mechanistically relate the patterns of population distribution with the dispersal by oceanic currents under an integrated framework. Here, we evaluate the role of oceanic currents on connectivity of Rhizophora mangle along the Southwest Atlantic. We inferred population genetic structure and migration rates, simulated the displacement of propagules and tested our hypotheses with Mantel tests and redundancy analysis. We observed populations structured in two major groups, north and south, which is corroborated by other studies with Rhizophora and other coastal plants. Inferred recent migration rates do not indicate ongoing gene flow between sites. Conversely, long-term migration rates were low across groups and contrasting dispersal patterns within each one, which is consistent with long-distance dispersal events. Our hypothesis tests suggest that both isolation by distance and isolation by oceanography (derived from the oceanic currents) can explain the neutral genetic variation of R. mangle in the region. Our findings expand current knowledge of mangrove connectivity and highlight how the association of molecular methods with oceanographic simulations improve the interpretation of the dispersal process. This integrative approach is a cost- and time-efficient strategy to include dispersal and connectivity data into marine protected areas planning and management.
Collapse
Affiliation(s)
| | - Yoshiaki Tsuda
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Yukio Nagano
- Analytical Research Center for Experimental Sciences, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | | | | | - Tadashi Kajita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa, Japan
| | | |
Collapse
|
3
|
Gouvêa LP, Fragkopoulou E, Cavanaugh K, Serrão EA, Araújo MB, Costello MJ, Westergerling EHT, Assis J. Oceanographic connectivity explains the intra-specific diversity of mangrove forests at global scales. Proc Natl Acad Sci U S A 2023; 120:e2209637120. [PMID: 36996109 PMCID: PMC10083552 DOI: 10.1073/pnas.2209637120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 02/16/2023] [Indexed: 03/31/2023] Open
Abstract
The distribution of mangrove intra-specific biodiversity can be structured by historical demographic processes that enhance or limit effective population sizes. Oceanographic connectivity (OC) may further structure intra-specific biodiversity by preserving or diluting the genetic signatures of historical changes. Despite its relevance for biogeography and evolution, the role of oceanographic connectivity in structuring the distribution of mangrove's genetic diversity has not been addressed at global scale. Here we ask whether connectivity mediated by ocean currents explains the intra-specific diversity of mangroves. A comprehensive dataset of population genetic differentiation was compiled from the literature. Multigenerational connectivity and population centrality indices were estimated with biophysical modeling coupled with network analyses. The variability explained in genetic differentiation was tested with competitive regression models built upon classical isolation-by-distance (IBD) models considering geographic distance. We show that oceanographic connectivity can explain the genetic differentiation of mangrove populations regardless of the species, region, and genetic marker (significant regression models in 95% of cases, with an average R-square of 0.44 ± 0.23 and Person's correlation of 0.65 ± 0.17), systematically improving IBD models. Centrality indices, providing information on important stepping-stone sites between biogeographic regions, were also important in explaining differentiation (R-square improvement of 0.06 ± 0.07, up to 0.42). We further show that ocean currents produce skewed dispersal kernels for mangroves, highlighting the role of rare long-distance dispersal events responsible for historical settlements. Overall, we demonstrate the role of oceanographic connectivity in structuring mangrove intra-specific diversity. Our findings are critical for mangroves' biogeography and evolution, but also for management strategies considering climate change and genetic biodiversity conservation.
Collapse
Affiliation(s)
- Lidiane P. Gouvêa
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
| | - Eliza Fragkopoulou
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
| | - Kyle Cavanaugh
- Department of Geography, University of California, Los Angeles, CA90095
| | - Ester A. Serrão
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
| | - Miguel B. Araújo
- Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC-Spanish National Research Council,28806Madrid, Spain
- Rui Nabeiro Biodiversity Chair, MED–Mediterranean Institute for Agriculture, Environment and Development, University of Évora, 7000Évora, Portugal
| | - Mark John Costello
- Faculty of Bioscience and Aquaculture, Nord Universitet, 1490Bodø, Norway
| | - E. H. Taraneh Westergerling
- Department of Biological Sciences, University of Bergen,5020Bergen, Norway
- Institute of Marine Research, 5817Bergen, Norway
| | - Jorge Assis
- CCMAR–Center of Marine Sciences, University of the Algarve, 8005-139Faro, Portugal
- Faculty of Bioscience and Aquaculture, Nord Universitet, 1490Bodø, Norway
| |
Collapse
|
4
|
Zhao F, Liu Y, Wang Z, Lu J, Cao L, Zeng C. Genetic Diversity and Connectivity of Ocypode ceratophthalmus in the East and South China Seas and Its Implications for Conservation. BIOLOGY 2023; 12:437. [PMID: 36979129 PMCID: PMC10044906 DOI: 10.3390/biology12030437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023]
Abstract
The East and South China Seas are rich in marine resources, but they are also under great pressure from climate change and human activities. Maintaining diversity and connectivity between communities is thought to be effective in mitigating these pressures. To assess the diversity and connectivity among the populations of Ocypode ceratophthalmus in the East and South China Seas, 15 populations from or near 15 marine protected areas in the two seas were studied using COI and D-Loop as genetic markers. The results showed that O. ceratophthalmus populations had high diversity, and the results of a hierarchical analysis of molecular variance and fixation index found that there were no significant genetic structures among these populations. High historical gene flow and high migration rates were further observed among populations by Migrate-n. Furthermore, the COI sequences further showed the asymmetric migration rate with a higher migration rate from south to north than from north to south. This information could provide recommendations for the management of marine protected areas in the East and South China Seas.
Collapse
Affiliation(s)
| | | | | | | | | | - Cong Zeng
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| |
Collapse
|
5
|
Wijayawardene NN, Dai DQ, Jayasinghe PK, Gunasekara SS, Nagano Y, Tibpromma S, Suwannarach N, Boonyuen N. Ecological and Oceanographic Perspectives in Future Marine Fungal Taxonomy. J Fungi (Basel) 2022; 8:1141. [PMID: 36354908 PMCID: PMC9696965 DOI: 10.3390/jof8111141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/07/2023] Open
Abstract
Marine fungi are an ecological rather than a taxonomic group that has been widely researched. Significant progress has been made in documenting their phylogeny, biodiversity, ultrastructure, ecology, physiology, and capacity for degradation of lignocellulosic compounds. This review (concept paper) summarizes the current knowledge of marine fungal diversity and provides an integrated and comprehensive view of their ecological roles in the world's oceans. Novel terms for 'semi marine fungi' and 'marine fungi' are proposed based on the existence of fungi in various oceanic environments. The major maritime currents and upwelling that affect species diversity are discussed. This paper also forecasts under-explored regions with a greater diversity of marine taxa based on oceanic currents. The prospects for marine and semi-marine mycology are highlighted, notably, technological developments in culture-independent sequencing approaches for strengthening our present understanding of marine fungi's ecological roles.
Collapse
Affiliation(s)
- Nalin N. Wijayawardene
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Section of Genetics, Institute for Research and Development in Health and Social Care, No: 393/3, Lily Avenue, Off Robert Gunawardane Mawatha, Battaramulla 10120, Sri Lanka
- National Institute of Fundamental Studies, Hantana Road, Kandy 20000, Sri Lanka
| | - Don-Qin Dai
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Prabath K. Jayasinghe
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Sudheera S. Gunasekara
- National Aquatic Resources Research and Development Agency (NARA), Crow Island, Colombo 00150, Sri Lanka
| | - Yuriko Nagano
- Deep-Sea Biodiversity Research Group, Marine Biodiversity and Environmental Assessment Research Center, Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka 237-0061, Japan
| | - Saowaluck Tibpromma
- Centre for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nattawut Boonyuen
- Plant Microbe Interaction Research Team (APMT), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
6
|
Physiological and Biochemical Responses of Kandelia obovata to Upwelling Stress. WATER 2022. [DOI: 10.3390/w14060899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mangroves growing in intertidal areas are faced with various stresses caused by coastal human activities and oceanic and atmospheric sources. Although the study of the physiological and biochemical characteristics of mangroves has been developing over the past four decades, the effect of upwelling on mangroves in plants stress resistance has seldom been investigated. Here, changes in the physiological and biochemical characteristics of the leaves of Kandelia obovata seedlings in response to upwelling were investigated (air temperature: 25 °C; water temperature: control 25 °C, 13 °C, and 5 °C; salinity: 10‰). The results revealed that upwelling treatment caused an increase in chlorophyll content but a decrease in photosynthetic fluorescence parameters. Hydrogen peroxide (H2O2) production and malondialdehyde activity (MDA) increased with the decrease in upwelling temperature. The proline content increased under upwelling stress, whereas the soluble sugar content decreased. Further, the activities of antioxidant enzymes, such as superoxide dismutase activity (SOD) and peroxidase activity (POD), showed an increasing trend during the treatment, while catalase activity (CAT) decreased. It was evidenced that upwelling stress triggered the physiological and biochemical responses of Kandelia obovata seedlings. This effect became more intense as the upwelling temperature decreased, and all these indicators showed different responses to upwelling stress. Through synthesizing more energy and regulating enzyme activity and osmotic pressure, the leaves of K. obovata formed a resistance mechanism to short-term upwelling.
Collapse
|
7
|
Land Use Scenario Simulation and Ecosystem Service Management for Different Regional Development Models of the Beibu Gulf Area, China. REMOTE SENSING 2021. [DOI: 10.3390/rs13163161] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Land use change is an important way for human activities to affect ecosystems. Based on the land use demands and policies, the simulation of future land use changes under different scenarios can test the rationality of socio-economic and policy-oriented land use changes. In this study, we set three scenarios of regular growth, ecological protection, and ecotourism development in 2030 for the Beibu Gulf area, China. We simulated the spatial distribution and evolution characteristics of the future landscape pattern using the Scenario Generator Rule Based Module of InVEST. Meanwhile, the ecosystem service value (ESV) was estimated by the improved unit area value equivalent method to reveal the trend of ESVs under different regional development models. The results indicated that the land use changes in the Beibu Gulf during 1999–2014 showed significant spatial heterogeneity. The farmland was mainly distributed in Beihai, the forestland was located in Fangchenggang, while the orchard was concentrated on Qinzhou. Due to economic construction and urban expansion, construction land and aquaculture land were gradually growing, while farmland and mud flat continued to decrease. Between 2014 and 2030, the total ESV decreased in the regular growth scenario and gradually increased in the ecological protection scenario and ecotourism development scenario. In addition, by comparing the three scenarios, the ecotourism development scenario is a more reasonable model for Guangxi Beibu Gulf area, which realized the trade-off between tourism development and resource conservation. Therefore, regional planners should not only consider maximizing ESVs when planning for ecosystem services, but also strive to maintain a reasonable structure of ecosystem services. Some suggestions were provided in this paper at the macro level and the local development model level respectively, which offered some references for the rational allocation of land resources, ecological environmental protection and ecotourism development in the coastal area of Beibu Gulf.
Collapse
|