1
|
Zhan X, Chen C, Niu L, Du X, Lei Y, Dan R, Wang ZW, Liu P. Locomotion modulates olfactory learning through proprioception in C. elegans. Nat Commun 2023; 14:4534. [PMID: 37500635 PMCID: PMC10374624 DOI: 10.1038/s41467-023-40286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
Locomotor activities can enhance learning, but the underlying circuit and synaptic mechanisms are largely unknown. Here we show that locomotion facilitates aversive olfactory learning in C. elegans by activating mechanoreceptors in motor neurons, and transmitting the proprioceptive information thus generated to locomotion interneurons through antidromic-rectifying gap junctions. The proprioceptive information serves to regulate experience-dependent activities and functional coupling of interneurons that process olfactory sensory information to produce the learning behavior. Genetic destruction of either the mechanoreceptors in motor neurons, the rectifying gap junctions between the motor neurons and locomotion interneurons, or specific inhibitory synapses among the interneurons impairs the aversive olfactory learning. We have thus uncovered an unexpected role of proprioception in a specific learning behavior as well as the circuit, synaptic, and gene bases for this function.
Collapse
Affiliation(s)
- Xu Zhan
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Chao Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, Hubei, China
- Department of Orthopaedics, Hefeng Central Hospital, 445800, Enshi, Hubei, China
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Xinran Du
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Ying Lei
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Rui Dan
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China
| | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, 06030, USA.
| | - Ping Liu
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Sherlaw-Sturrock CA, Willis T, Kiely N, Houge G, Vogt J. PIEZO2-related distal arthrogryposis type 5: Longitudinal follow-up of a three-generation family broadens phenotypic spectrum, complications, and health surveillance recommendations for this patient group. Am J Med Genet A 2022; 188:2790-2795. [PMID: 35698866 DOI: 10.1002/ajmg.a.62868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023]
Abstract
Arthrogryposis is a heterogenous condition with a wide variety of etiological causes. It has been subdivided clinically based on the presence of additional features. Dominant gain of function (GoF) pathogenic variants in PIEZO2 have been associated with several forms of arthrogryposis. Previous reports have focused on diagnosis and clinical features. We report a three-generation family with four affected individuals with a known pathogenic GoF change p.(Glu2727del) in PIEZO2. All family members presented at birth with distal arthrogryposis and ophthalmoplegia but have varied in their subsequent clinical course with differences in mobility and joint restriction. In the longer term, other features have presented including dysphagia, back pain and spinal stenosis-like symptoms, raised intraocular pressure, and progressive restrictive lung disease. As far as we know, this is the first report detailing the longitudinal follow-up of a three-generation family which highlights potential long-term complications in patients with PIEZO2-related arthrogryposis. We present this family to demonstrate the importance of long-term follow-up for the clinical management of this group of patients.
Collapse
Affiliation(s)
| | - Tracey Willis
- Neuromuscular Service, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Nigel Kiely
- Department of Orthopaedic Surgery, Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, UK
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
3
|
Dalghi MG, Ruiz WG, Clayton DR, Montalbetti N, Daugherty SL, Beckel JM, Carattino MD, Apodaca G. Functional roles for PIEZO1 and PIEZO2 in urothelial mechanotransduction and lower urinary tract interoception. JCI Insight 2021; 6:e152984. [PMID: 34464353 PMCID: PMC8525643 DOI: 10.1172/jci.insight.152984] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
The mechanisms that link visceral mechanosensation to the perception of internal organ status (i.e., interoception) remain elusive. In response to bladder filling, the urothelium releases ATP, which is hypothesized to stimulate voiding function by communicating the degree of bladder fullness to subjacent tissues, including afferent nerve fibers. To determine if PIEZO channels function as mechanosensors in these events, we generated conditional urothelial Piezo1-, Piezo2-, and dual Piezo1/2-knockout (KO) mice. While functional PIEZO1 channels were expressed in all urothelial cell layers, Piezo1-KO mice had a limited phenotype. Piezo2 expression was limited to a small subset of superficial umbrella cells, yet male Piezo2-KO mice exhibited incontinence (i.e., leakage) when their voiding behavior was monitored during their active dark phase. Dual Piezo1/2-KO mice had the most affected phenotype, characterized by decreased urothelial responses to mechanical stimulation, diminished ATP release, bladder hypoactivity in anesthetized Piezo1/2-KO females but not males, and urinary incontinence in both male and female Piezo1/2-KO mice during their dark phase but not inactive light one. Our studies reveal that the urothelium functions in a sex- and circadian rhythm–dependent manner to link urothelial PIEZO1/2 channel–driven mechanotransduction to normal voiding function and behavior, and in the absence of these signals, bladder dysfunction ensues.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marcelo D Carattino
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Gerard Apodaca
- Department of Medicine.,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|