1
|
Li S, Garb BF, Qin T, Soppe S, Lopez E, Patil S, D’Silva NJ, Rozek LS, Sartor MA. Tumor Subtype Classification Tool for HPV-associated Head and Neck Cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.05.601906. [PMID: 39026719 PMCID: PMC11257489 DOI: 10.1101/2024.07.05.601906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Importance Molecular subtypes of HPV-associated Head and Neck Squamous Cell Carcinoma (HNSCC), named IMU (immune strong) and KRT (highly keratinized), are well-recognized and have been shown to have distinct mechanisms of carcinogenesis, clinical outcomes, and potentially differing optimal treatment strategies. Currently, no standardized method exists to subtype a new HPV+ HNSCC tumor. Our paper introduces a machine learning-based classifier and webtool to reliably subtype HPV+ HNSCC tumors using the IMU/KRT paradigm and highlights the importance of subtype in HPV+ HNSCC. Objective To develop a robust, accurate machine learning-based classification tool that standardizes the process of subtyping HPV+ HNSCC, and to investigate the clinical, demographic, and molecular features associated with subtype in a meta-analysis of four patient cohorts. Data Sources We conducted RNA-seq on 67 HNSCC FFPE blocks from University of Michigan hospital. Combining this with three publicly available datasets, we utilized a total of 229 HPV+ HNSCC RNA-seq samples. All participants were HPV+ according to RNA expression. An ensemble machine learning approach with five algorithms and three different input training gene sets were developed, with final subtype determined by majority vote. Several additional steps were taken to ensure rigor and reproducibility throughout. Study Selection The classifier was trained and tested using 84 subtype-labeled HPV+ RNA-seq samples from two cohorts: University of Michigan (UM; n=18) and TCGA-HNC (n=66). The classifier robustness was validated with two independent cohorts: 83 samples from the HPV Virome Consortium and 62 additional samples from UM. We revealed 24 of 39 tested clinicodemographic and molecular variables significantly associated with subtype. Results The classifier achieved 100% accuracy in the test set. Validation on two additional cohorts demonstrated successful separation by known features of the subtypes. Investigating the relationship between subtype and 39 molecular and clinicodemographic variables revealed IMU is associated with epithelial-mesenchymal transition (p=2.25×10-4), various immune cell types, and lower radiation resistance (p=0.0050), while KRT is more highly keratinized (p=2.53×10-8), and more likely female than IMU (p=0.0082). Conclusions and Relevance This study provides a reliable classifier for subtyping HPV+ HNSCC tumors as either IMU or KRT based on bulk RNA-seq data, and additionally, improves our understanding of the HPV+ HNSCC subtypes.
Collapse
Affiliation(s)
- Shiting Li
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Bailey F. Garb
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Elizabeth Lopez
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Snehal Patil
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Laura S. Rozek
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Anuntakarun S, Khamjerm J, Tangkijvanich P, Chuaypen N. Classification of Long Non-Coding RNAs s Between Early and Late Stage of Liver Cancers From Non-coding RNA Profiles Using Machine-Learning Approach. Bioinform Biol Insights 2024; 18:11779322241258586. [PMID: 38846329 PMCID: PMC11155358 DOI: 10.1177/11779322241258586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
Long non-coding RNAs (lncRNAs), which are RNA sequences greater than 200 nucleotides in length, play a crucial role in regulating gene expression and biological processes associated with cancer development and progression. Liver cancer is a major cause of cancer-related mortality worldwide, notably in Thailand. Although machine learning has been extensively used in analyzing RNA-sequencing data for advanced knowledge, the identification of potential lncRNA biomarkers for cancer, particularly focusing on lncRNAs as molecular biomarkers in liver cancer, remains comparatively limited. In this study, our objective was to identify candidate lncRNAs in liver cancer. We employed an expression data set of lncRNAs from patients with liver cancer, which comprised 40 699 lncRNAs sourced from The CancerLivER database. Various feature selection methods and machine-learning approaches were used to identify these candidate lncRNAs. The results showed that the random forest algorithm could predict lncRNAs using features extracted from the database, which achieved an area under the curve (AUC) of 0.840 for classifying lncRNAs between early (stage 1) and late stages (stages 2, 3, and 4) of liver cancer. Five of 23 significant lncRNAs (WAC-AS1, MAPKAPK5-AS1, ARRDC1-AS1, AC133528.2, and RP11-1094M14.11) were differentially expressed between early and late stage of liver cancer. Based on the Gene Expression Profiling Interactive Analysis (GEPIA) database, higher expression of WAC-AS1, MAPKAPK5-AS1, and ARRDC1-AS1 was associated with shorter overall survival. In conclusion, the classification model could predict the early and late stages of liver cancer using the signature expression of lncRNA genes. The identified lncRNAs might be used as early diagnostic and prognostic biomarkers for patients with liver cancer.
Collapse
Affiliation(s)
- Songtham Anuntakarun
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jakkrit Khamjerm
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Biomedical Engineering Program, Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Pisit Tangkijvanich
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Natthaya Chuaypen
- Center of Excellence in Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
3
|
Park J, Lee JW, Park M. Comparison of cancer subtype identification methods combined with feature selection methods in omics data analysis. BioData Min 2023; 16:18. [PMID: 37420304 DOI: 10.1186/s13040-023-00334-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Cancer subtype identification is important for the early diagnosis of cancer and the provision of adequate treatment. Prior to identifying the subtype of cancer in a patient, feature selection is also crucial for reducing the dimensionality of the data by detecting genes that contain important information about the cancer subtype. Numerous cancer subtyping methods have been developed, and their performance has been compared. However, combinations of feature selection and subtype identification methods have rarely been considered. This study aimed to identify the best combination of variable selection and subtype identification methods in single omics data analysis. RESULTS Combinations of six filter-based methods and six unsupervised subtype identification methods were investigated using The Cancer Genome Atlas (TCGA) datasets for four cancers. The number of features selected varied, and several evaluation metrics were used. Although no single combination was found to have a distinctively good performance, Consensus Clustering (CC) and Neighborhood-Based Multi-omics Clustering (NEMO) used with variance-based feature selection had a tendency to show lower p-values, and nonnegative matrix factorization (NMF) stably showed good performance in many cases unless the Dip test was used for feature selection. In terms of accuracy, the combination of NMF and similarity network fusion (SNF) with Monte Carlo Feature Selection (MCFS) and Minimum-Redundancy Maximum Relevance (mRMR) showed good overall performance. NMF always showed among the worst performances without feature selection in all datasets, but performed much better when used with various feature selection methods. iClusterBayes (ICB) had decent performance when used without feature selection. CONCLUSIONS Rather than a single method clearly emerging as optimal, the best methodology was different depending on the data used, the number of features selected, and the evaluation method. A guideline for choosing the best combination method under various situations is provided.
Collapse
Affiliation(s)
- JiYoon Park
- Department of Statistics, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Jae Won Lee
- Department of Statistics, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, South Korea
| | - Mira Park
- Department of Preventive Medicine, Eulji University, 77 Gyeryong-Ro, Jung-Gu, Daejeon, 34824, South Korea.
| |
Collapse
|
4
|
Huang X, Bajpai AK, Sun J, Xu F, Lu L, Yousefi S. A new gene-scoring method for uncovering novel glaucoma-related genes using non-negative matrix factorization based on RNA-seq data. Front Genet 2023; 14:1204909. [PMID: 37377596 PMCID: PMC10292752 DOI: 10.3389/fgene.2023.1204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Early diagnosis and treatment of glaucoma are challenging. The discovery of glaucoma biomarkers based on gene expression data could potentially provide new insights for early diagnosis, monitoring, and treatment options of glaucoma. Non-negative Matrix Factorization (NMF) has been widely used in numerous transcriptome data analyses in order to identify subtypes and biomarkers of different diseases; however, its application in glaucoma biomarker discovery has not been previously reported. Our study applied NMF to extract latent representations of RNA-seq data from BXD mouse strains and sorted the genes based on a novel gene scoring method. The enrichment ratio of the glaucoma-reference genes, extracted from multiple relevant resources, was compared using both the classical differentially expressed gene (DEG) analysis and NMF methods. The complete pipeline was validated using an independent RNA-seq dataset. Findings showed our NMF method significantly improved the enrichment detection of glaucoma genes. The application of NMF with the scoring method showed great promise in the identification of marker genes for glaucoma.
Collapse
Affiliation(s)
- Xiaoqin Huang
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Akhilesh K. Bajpai
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jian Sun
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institute of Health (NIH), Bethesda, MD, United States
| | - Fuyi Xu
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, China
| | - Lu Lu
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Siamak Yousefi
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
5
|
Blourchi P, Ghasemzadeh A. Majority voting based on different feature ranking techniques from gene expression. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023. [DOI: 10.3233/jifs-224029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
In bioinformatics studies, many modeling tasks are characterized by high dimensionality, leading to the widespread use of feature selection techniques to reduce dimensionality. There are a multitude of feature selection techniques that have been proposed in the literature, each relying on a single measurement method to select candidate features. This has an impact on the classification performance. To address this issue, we propose a majority voting method that uses five different feature ranking techniques: entropy score, Pearson’s correlation coefficient, Spearman correlation coefficient, Kendall correlation coefficient, and t-test. By using a majority voting approach, only the features that appear in all five ranking methods are selected. This selection process has three key advantages over traditional techniques. Firstly, it is independent of any particular feature ranking method. Secondly, the feature space dimension is significantly reduced compared to other ranking methods. Finally, the performance is improved as the most discriminatory and informative features are selected via the majority voting process. The performance of the proposed method was evaluated using an SVM, and the results were assessed using accuracy, sensitivity, specificity, and AUC on various biomedical datasets. The results demonstrate the superior effectiveness of the proposed method compared to state-of-the-art methods in the literature.
Collapse
|
6
|
Radley A, Corujo-Simon E, Nichols J, Smith A, Dunn SJ. Entropy sorting of single-cell RNA sequencing data reveals the inner cell mass in the human pre-implantation embryo. Stem Cell Reports 2023; 18:47-63. [PMID: 36240776 PMCID: PMC9859930 DOI: 10.1016/j.stemcr.2022.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
A major challenge in single-cell gene expression analysis is to discern meaningful cellular heterogeneity from technical or biological noise. To address this challenge, we present entropy sorting (ES), a mathematical framework that distinguishes genes indicative of cell identity. ES achieves this in an unsupervised manner by quantifying if observed correlations between features are more likely to have occurred due to random chance versus a dependent relationship, without the need for any user-defined significance threshold. On synthetic data, we demonstrate the removal of noisy signals to reveal a higher resolution of gene expression patterns than commonly used feature selection methods. We then apply ES to human pre-implantation embryo single-cell RNA sequencing (scRNA-seq) data. Previous studies failed to unambiguously identify early inner cell mass (ICM), suggesting that the human embryo may diverge from the mouse paradigm. In contrast, ES resolves the ICM and reveals sequential lineage bifurcations as in the classical model. ES thus provides a powerful approach for maximizing information extraction from high-dimensional datasets such as scRNA-seq data.
Collapse
Affiliation(s)
- Arthur Radley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Elena Corujo-Simon
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Jennifer Nichols
- MRC Human Genetics Unit, MRC Institute of Genetics and Cancer, The University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Sara-Jane Dunn
- Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK.
| |
Collapse
|
7
|
Bertolini R, Finch SJ. Stability of filter feature selection methods in data pipelines: a simulation study. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS 2022. [DOI: 10.1007/s41060-022-00373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Guryleva MV, Penzar DD, Chistyakov DV, Mironov AA, Favorov AV, Sergeeva MG. Investigation of the Role of PUFA Metabolism in Breast Cancer Using a Rank-Based Random Forest Algorithm. Cancers (Basel) 2022; 14:cancers14194663. [PMID: 36230586 PMCID: PMC9562210 DOI: 10.3390/cancers14194663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Polyunsaturated fatty acids (PUFAs) and their derivatives, oxylipins, are a constant focus of cancer research due to the relationship between cancer and processes of energy metabolism and inflammation, where a PUFA system is an active player. Only recently have methods been developed that allow for studying such complex systems. Using the Rank-based Random Forest (RF) model, we show that PUFA metabolism genes are critical for the pathogenesis of breast cancer (BC); BC subtypes differ in PUFA metabolism gene expression. The enrichment of BC subtypes with various genes associated with oxylipin signaling pathways indicates a different contribution of these compounds to the biology of subtypes. Abstract Polyunsaturated fatty acid (PUFA) metabolism is currently a focus in cancer research due to PUFAs functioning as structural components of the membrane matrix, as fuel sources for energy production, and as sources of secondary messengers, so called oxylipins, important players of inflammatory processes. Although breast cancer (BC) is the leading cause of cancer death among women worldwide, no systematic study of PUFA metabolism as a system of interrelated processes in this disease has been carried out. Here, we implemented a Boruta-based feature selection algorithm to determine the list of most important PUFA metabolism genes altered in breast cancer tissues compared with in normal tissues. A rank-based Random Forest (RF) model was built on the selected gene list (33 genes) and applied to predict the cancer phenotype to ascertain the PUFA genes involved in cancerogenesis. It showed high-performance of dichotomic classification (balanced accuracy of 0.94, ROC AUC 0.99) We also retrieved a list of the important PUFA genes (46 genes) that differed between molecular subtypes at the level of breast cancer molecular subtypes. The balanced accuracy of the classification model built on the specified genes was 0.82, while the ROC AUC for the sensitivity analysis was 0.85. Specific patterns of PUFA metabolic changes were obtained for each molecular subtype of breast cancer. These results show evidence that (1) PUFA metabolism genes are critical for the pathogenesis of breast cancer; (2) BC subtypes differ in PUFA metabolism genes expression; and (3) the lists of genes selected in the models are enriched with genes involved in the metabolism of signaling lipids.
Collapse
Affiliation(s)
- Mariia V. Guryleva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitry D. Penzar
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Correspondence: ; Tel.: +7-495-939-4332
| | - Andrey A. Mironov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Kharkevich Institute of Information Transmission Problems, Russian Academy of Sciences, 127051 Moscow, Russia
| | - Alexander V. Favorov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119991 Moscow, Russia
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
9
|
Li A, Mueller A, English B, Arena A, Vera D, Kane AE, Sinclair DA. Novel feature selection methods for construction of accurate epigenetic clocks. PLoS Comput Biol 2022; 18:e1009938. [PMID: 35984867 PMCID: PMC9432708 DOI: 10.1371/journal.pcbi.1009938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/31/2022] [Accepted: 07/11/2022] [Indexed: 11/22/2022] Open
Abstract
Epigenetic clocks allow us to accurately predict the age and future health of individuals based on the methylation status of specific CpG sites in the genome and are a powerful tool to measure the effectiveness of longevity interventions. There is a growing need for methods to efficiently construct epigenetic clocks. The most common approach is to create clocks using elastic net regression modelling of all measured CpG sites, without first identifying specific features or CpGs of interest. The addition of feature selection approaches provides the opportunity to optimise the identification of predictive CpG sites. Here, we apply novel feature selection methods and combinatorial approaches including newly adapted neural networks, genetic algorithms, and 'chained' combinations. Human whole blood methylation data of ~470,000 CpGs was used to develop clocks that predict age with R2 correlation scores of greater than 0.73, the most predictive of which uses 35 CpG sites for a R2 correlation score of 0.87. The five most frequent sites across all clocks were modelled to build a clock with a R2 correlation score of 0.83. These two clocks are validated on two external datasets where they maintain excellent predictive accuracy. When compared with three published epigenetic clocks (Hannum, Horvath, Weidner) also applied to these validation datasets, our clocks outperformed all three models. We identified gene regulatory regions associated with selected CpGs as possible targets for future aging studies. Thus, our feature selection algorithms build accurate, generalizable clocks with a low number of CpG sites, providing important tools for the field.
Collapse
Affiliation(s)
- Adam Li
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amber Mueller
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Brad English
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Anthony Arena
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel Vera
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alice E. Kane
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| | - David A. Sinclair
- Blavatnik Institute, Dept. of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|