1
|
Dalapicolla J, Rodrigues do Prado J, Lacey Knowles L, Reis Percequillo A. Phylogenomics and species delimitation of an abundant and little-studied Amazonian forest spiny rat. Mol Phylogenet Evol 2024; 191:107992. [PMID: 38092321 DOI: 10.1016/j.ympev.2023.107992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Species delimitation studies based on integrating different datasets such as genomic, morphometric, and cytogenetics data are rare in studies focused on Neotropical rodents. As a consequence, the evolutionary history of most of these genera remains poorly understood. Proechimys is a highly diverse and widely distributed genus of Neotropical spiny rats with unique traits like multiple sympatry, micro-habitat segregation, and fuzzy species limits. Here, we applied RAD-Seq to infer the phylogenetic relationships, estimate the species boundaries, and estimate the divergence times for Proechimys, one of the most common and least studied small mammals in the Amazon. We tested whether inferred lineages in the phylogenetic trees could be considered distinct species based on the genomic dataset and morphometric data. Analyses revealed the genus is not monophyletic, with Proechimys hoplomyoides sister to a group of Hoplomys gymnurus + all other Proechimys species, contesting the generic status of Hoplomys. There are five main clades in Proechimys stricto sensu (excluding H. gymnurus and P. hoplomyoides). Species delimitation analyses supported 25 species within the genus Proechimys. The five main clades in Proechimys stricto sensu also showed similar ages for their origins, and two rapid diversification events were identified in the Early Pliocene and in the Early Pleistocene. Most cases of sympatry in Proechimys occur among species from the different main clades, and although Proechimys is an inhabitant of the Amazon, three species occupied the Cerrado biome during the Pleistocene. We could associate available nominal taxon, cytogenetics information, and DNA sequences in Genbank to most of the 25 species we hypothesized from our delimitation analyses. Based on our analyses, we estimate that eight forms represent putative new species that need a taxonomic revision.
Collapse
Affiliation(s)
- Jeronymo Dalapicolla
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil; Instituto Tecnológico Vale, Belém, Pará, Brazil.
| | | | - L Lacey Knowles
- Department of Ecology and Evolutionary Biology, Museum of Zoology, University of Michigan, Ann Arbor, MI, USA
| | - Alexandre Reis Percequillo
- Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Noskova E, Abramov N, Iliutkin S, Sidorin A, Dobrynin P, Ulyantsev VI. GADMA2: more efficient and flexible demographic inference from genetic data. Gigascience 2022; 12:giad059. [PMID: 37609916 PMCID: PMC10445054 DOI: 10.1093/gigascience/giad059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2023] [Accepted: 07/05/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Inference of complex demographic histories is a source of information about events that happened in the past of studied populations. Existing methods for demographic inference typically require input from the researcher in the form of a parameterized model. With an increased variety of methods and tools, each with its own interface, the model specification becomes tedious and error-prone. Moreover, optimization algorithms used to find model parameters sometimes turn out to be inefficient, for instance, by being not properly tuned or highly dependent on a user-provided initialization. The open-source software GADMA addresses these problems, providing automatic demographic inference. It proposes a common interface for several likelihood engines and provides global parameters optimization based on a genetic algorithm. RESULTS Here, we introduce the new GADMA2 software and provide a detailed description of the added and expanded features. It has a renovated core code base, new likelihood engines, an updated optimization algorithm, and a flexible setup for automatic model construction. We provide a full overview of GADMA2 enhancements, compare the performance of supported likelihood engines on simulated data, and demonstrate an example of GADMA2 usage on 2 empirical datasets. CONCLUSIONS We demonstrate the better performance of a genetic algorithm in GADMA2 by comparing it to the initial version and other existing optimization approaches. Our experiments on simulated data indicate that GADMA2's likelihood engines are able to provide accurate estimations of demographic parameters even for misspecified models. We improve model parameters for 2 empirical datasets of inbred species.
Collapse
Affiliation(s)
- Ekaterina Noskova
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
| | | | - Stanislav Iliutkin
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
| | - Anton Sidorin
- Laboratory of Biochemical Genetics, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Pavel Dobrynin
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
- Human Genetics Laboratory, Vavilov Institute of General Genetics RAS, Moscow 119991, Russia
| | - Vladimir I Ulyantsev
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
3
|
Quiroga-Carmona M, D’Elía G. Climate influences the genetic structure and niche differentiation among populations of the olive field mouse Abrothrix olivacea (Cricetidae: Abrotrichini). Sci Rep 2022; 12:22395. [PMID: 36575268 PMCID: PMC9794701 DOI: 10.1038/s41598-022-26937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Even when environmental variation over time and space is commonly considered as an important driver of population divergence, few evaluations of intraspecific genetic variation explicitly assess whether observed structure has been caused by or is correlated with landscape heterogeneity. Several phylogeographic studies have characterized the mitochondrial diversity of Abrothrix olivacea, but none has incorporated landscape genetics analyses and ecological niche modeling, leaving a gap in the understanding of the species evolutionary history. Here, these aspects were addressed based on 186 single nucleotide polymorphisms, extracted from sequences of 801 bp of Cytb gene, gathered from 416 individuals collected at 103 localities in Argentina and Chile. Employing multivariate statistical analyses (gPCA, Mantel and Partial Mantel Tests, Procrustes Analysis, and RDA), associations between genetic differences and geographic and climatic distances were evaluated. Presence data was employed to estimate the potential geographic distribution of this species during historical and contemporary climatic scenarios, and to address differences among the climatic niches of their main mitochondrial lineages. The significant influence of landscape features in structuring mitochondrial variability was evidenced at different spatial scales, as well as the role of past climatic dynamics in driving geographic range shifts, mostly associated to Quaternary glaciations. Overall, these results suggest that throughout geographic range gene flow is unevenly influenced by climatic dissimilarity and the geographic distancing, and that studied lineages do not exhibit distributional signals of climatic niche conservatism. Additionally, genetic differentiation occurred by more complex evolutionary processes than mere disruption of gene flow or drift.
Collapse
Affiliation(s)
- Marcial Quiroga-Carmona
- grid.7119.e0000 0004 0487 459XInstituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.7119.e0000 0004 0487 459XColección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.24434.350000 0004 1937 0060School of Biological Sciences, University of Nebraska, Lincoln, USA
| | - Guillermo D’Elía
- grid.7119.e0000 0004 0487 459XInstituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile ,grid.7119.e0000 0004 0487 459XColección de Mamíferos, Facultad de Ciencias, Universidad Austral de Chile, Campus Isla Teja, Valdivia, Chile
| |
Collapse
|
4
|
Ojeda AA, Novillo A, Lanzone C, Rodríguez D, Cuevas MF, Jayat JP, Teta P, Ojeda RA, Borisenko A. DNA barcodes highlight genetic diversity patterns in rodents from lowland desert and andean areas in argentina. Mol Ecol Resour 2022; 22:2349-2362. [PMID: 35201669 DOI: 10.1111/1755-0998.13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 02/14/2022] [Indexed: 11/27/2022]
Abstract
Rodents are an important component of South America fauna. Their high diversity has motivated researchers to continually review their taxonomy, genetic diversity, species limits, and phylogenetic relationships. We apply DNA-barcodes for assessing the taxonomic and genetic diversity in the two major lineages of South American rodents: caviomorphs and sigmodontines. We analyzed 335 COI barcodes in 34 morphologically determined species from 39 localities along central Andes and arid lands of Argentina. Neighbor Joining and Maximum Likelihood reconstruction provided clear separation between species. The Barcode Index Number and Bayesian Poisson Tree Processes were used to confirm concordance between sequence clusters and species designations by taxonomy. We found deep divergence within the Phyllotis xanthopygus species complex, with distances up to 13.0% between geographically separated lineages. Minor divergences (3.30% and 2.52%) were found within Abrothrix hirta, and Tympanoctomys barrerae, respectively, with differentiation in their genetic lineages. Also, we documented geographically separated clusters for Akodon spegazzinii and A.oenos with up to 2.3% divergence, but clustering methods failed to distinguish them as different species. Sequence results show a clear barcode gap with a mean intraspecific divergence (0.56%) vs. a minimum nearest-neighbor distance averaging (10.1%). Distances between congeneric species varied from 4.1 to 14%, with the exception of two related forms within Euneomys and the sister species Akodon spegazzinii and A. oenos. This study constitutes a substantial contribution to the global barcode reference library. It provides insights into the complex phylogeographic patterns and speciation scenarios in rodents, while highlighting areas that require in-depth taxonomic and integrative research.
Collapse
Affiliation(s)
- Agustina A Ojeda
- Grupo de Investigaciones de la Biodiversidad. Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Centro de Ciencia y Técnica Mendoza, Argentina
| | - Agustina Novillo
- Instituto de Biodiversidad Neotropical (IBN) CONICET-UNT. Facultad de Ciencias Naturales, Universidad Nacional de Tucumán, Argentina
| | - Cecilia Lanzone
- Laboratorio de Genética Evolutiva (FCEQyN, IBS, UNaM-CONICET). Posadas. Misiones, Argentina
| | - Daniela Rodríguez
- Witral-Red de Investigaciones en conservación y manejo de vida silvestre en sistemas socio-ecológicos, Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Centro de Ciencia y Técnica Mendoza, Argentina
| | - M Fernanda Cuevas
- Grupo de Investigaciones de la Biodiversidad. Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Centro de Ciencia y Técnica Mendoza, Argentina
| | - J Pablo Jayat
- Unidad Ejecutora Lillo (CONICET-Fundación M. Lillo). San Miguel de Tucumán. Tucumán, Argentina
| | - Pablo Teta
- División Mastozoología, Museo Argentino de Ciencias Naturales Bernardino Rivadavia. Buenos Aires, Argentina
| | - Ricardo A Ojeda
- Grupo de Investigaciones de la Biodiversidad. Instituto Argentino de Investigaciones de las Zonas Áridas, CONICET, Centro de Ciencia y Técnica Mendoza, Argentina
| | - Alex Borisenko
- Department of Integrative Biology. College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
5
|
Quiroga-Carmona M, Abud C, Lessa EP, D’Elía G. The Mitochondrial Genetic Diversity of the Olive Field Mouse Abrothrix olivacea (Cricetidae; Abrotrichini) is Latitudinally Structured Across Its Geographic Distribution. J MAMM EVOL 2022. [DOI: 10.1007/s10914-021-09582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Boric-Bargetto D, Zúñiga-Reinoso Á, Inostroza-Michel O, Rodríguez-Serrano E, González-Acuña D, Palma RE, Hernández CE. A comprehensive overview of the genetic diversity in Thylamys elegans (Didelphimorphia: Didelphidae): establishing the phylogeographic determinants. REVISTA CHILENA DE HISTORIA NATURAL 2021. [DOI: 10.1186/s40693-021-00103-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
For the genus Thylamys, the rivers have been reported as barriers to dispersal, limiting current and historical distribution of its lineages. We hypothesized that the Maipo river has affected the genetic structure of northern and southern lineages of Thylamys elegans, recovering a phylogenetic relationships with reciprocally monophyletic sister groups on opposite river banks. We evaluated the role of other rivers in the Mediterranean zone of Chile as historical and recent modulators of the biogeographic processes of this species.
Methods
We applied a phylogeographic approach, using the cytochrome-b mitochondrial gene for 93 individuals of T. elegans, from 37 localities in a latitudinal gradient between 21°25’ and 35˚56’S, encompassing a geographic area between the Atacama Desert and most of the Mediterranean Chilean zone.
Results
The phylogenetics results recovered six lineages within T. elegans: Thylamys elegans elegans, Thylamys elegans coquimbensis, the Loa lineage and three other lineages not described previously (Aconcagua, South 1 and South 2). We suggest that following rivers play a role like primary barrier: the Maipo river in the genetic differentiation of northern and southern ancestral lineages, and the Mataquito river and its tributary Teno river for the South 1 and South 2 lineages. On the other hand, the Quilimarí river preserve the genetic divergence in T. e. coquimbensis and Aconcagua lineage and the Aconcagua river in Aconcagua lineage and T. e. elegans acting like secondary barriers.
Conclusions
We concluded that the genetic diversity and biogeographic history of T. elegans was shaped by mountain glaciers, changes in river water levels during the Pleistocene glaciations and hyperaridity, promoting the differentiation and persistance of the T. elegans lineages.
Collapse
|