1
|
Yang D, Huang H, Zeng T, Wang L, Ying C, Chen X, Zhou X, Sun F, Chen Y, Li S, Wang B, Wu S, Xie F, Cen Z, Luo W. Unveiling distinct clinical manifestations of primary familial brain calcifications in Asian and European patients: A study based on 10-year individual-level data. Parkinsonism Relat Disord 2025; 132:107290. [PMID: 39827654 DOI: 10.1016/j.parkreldis.2025.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/06/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Primary Familial Brain Calcification (PFBC) can manifest clinically with a complex and heterogeneous array of symptoms, including parkinsonism, dysarthria, and cognitive impairment. However, the distinct presentations of PFBC in Asian and European populations remain unclear. METHODS We conducted a systematic search of PubMed for studies involving genetically confirmed PFBC patients. Demographic data, genetic information, radiological examinations, and clinical characteristics were extracted for each case. RESULTS The study included 120 publications and 564 genetically confirmed PFBC patients. Asian and European PFBC populations represented 54 % and 37 % of global patients, respectively. While calcification patterns showed no significant differences between Asian and European PFBC patients, European autosomal dominant PFBC variant carriers were more likely to exhibit clinical symptoms compared to their Asian counterparts (OR = 2.90, 95 % CI 1.55-5.60) and had an earlier estimated age of onset (median age 42 vs 58). CONCLUSION The interaction between regional differences and genetically determined calcification severity may collectively influence PFBC symptom progression. Future research should further explore the potential roles of gene modifiers, ethnic background, socioeconomic and environmental exposure factors underlying regional differences in PFBC progression.
Collapse
Affiliation(s)
- Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lebo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chenxin Ying
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinhui Chen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinbo Zhou
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Fangyue Sun
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yilin Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Wang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Sheng Wu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Xie
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhidong Cen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Wei Luo
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Chen SY, Ho CJ, Lu YT, Lin CH, Lan MY, Tsai MH. The Genetics of Primary Familial Brain Calcification: A Literature Review. Int J Mol Sci 2023; 24:10886. [PMID: 37446066 DOI: 10.3390/ijms241310886] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Primary familial brain calcification (PFBC), also known as Fahr's disease, is a rare inherited disorder characterized by bilateral calcification in the basal ganglia according to neuroimaging. Other brain regions, such as the thalamus, cerebellum, and subcortical white matter, can also be affected. Among the diverse clinical phenotypes, the most common manifestations are movement disorders, cognitive deficits, and psychiatric disturbances. Although patients with PFBC always exhibit brain calcification, nearly one-third of cases remain clinically asymptomatic. Due to advances in the genetics of PFBC, the diagnostic criteria of PFBC may need to be modified. Hitherto, seven genes have been associated with PFBC, including four dominant inherited genes (SLC20A2, PDGFRB, PDGFB, and XPR1) and three recessive inherited genes (MYORG, JAM2, and CMPK2). Nevertheless, around 50% of patients with PFBC do not have pathogenic variants in these genes, and further PFBC-associated genes are waiting to be identified. The function of currently known genes suggests that PFBC could be caused by the dysfunction of the neurovascular unit, the dysregulation of phosphate homeostasis, or mitochondrial dysfunction. An improved understanding of the underlying pathogenic mechanisms for PFBC may facilitate the development of novel therapies.
Collapse
Affiliation(s)
- Shih-Ying Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Min-Yu Lan
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Parkinson's Disease, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
- Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
- Genomics and Proteomics Core Laboratory, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung 833401, Taiwan
| |
Collapse
|
3
|
Sun H, Xu X, Luo J, Ma T, Cui J, Liu M, Xiong B, Zhu S, Liu JY. Mechanisms of PiT2-loop7 Missense Mutations Induced Pi Dyshomeostasis. Neurosci Bull 2023; 39:57-68. [PMID: 35713844 PMCID: PMC9849530 DOI: 10.1007/s12264-022-00893-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/14/2022] [Indexed: 01/25/2023] Open
Abstract
PiT2 is an inorganic phosphate (Pi) transporter whose mutations are linked to primary familial brain calcification (PFBC). PiT2 mainly consists of two ProDom (PD) domains and a large intracellular loop region (loop7). The PD domains are crucial for the Pi transport, but the role of PiT2-loop7 remains unclear. In PFBC patients, mutations in PiT2-loop7 are mainly nonsense or frameshift mutations that probably cause PFBC due to C-PD1131 deletion. To date, six missense mutations have been identified in PiT2-loop7; however, the mechanisms by which these mutations cause PFBC are poorly understood. Here, we found that the p.T390A and p.S434W mutations in PiT2-loop7 decreased the Pi transport activity and cell surface levels of PiT2. Furthermore, we showed that these two mutations attenuated its membrane localization by affecting adenosine monophosphate-activated protein kinase (AMPK)- or protein kinase B (AKT)-mediated PiT2 phosphorylation. In contrast, the p.S121C and p.S601W mutations in the PD domains did not affect PiT2 phosphorylation but rather impaired its substrate-binding abilities. These results suggested that missense mutations in PiT2-loop7 can cause Pi dyshomeostasis by affecting the phosphorylation-regulated cell-surface localization of PiT2. This study helps understand the pathogenesis of PFBC caused by PiT2-loop7 missense mutations and indicates that increasing the phosphorylation levels of PiT2-loop7 could be a promising strategy for developing PFBC therapies.
Collapse
Affiliation(s)
- Hao Sun
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xuan Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junyu Luo
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Tingbin Ma
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jiaming Cui
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mugen Liu
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, HUST, Wuhan, 430030, China
| | - Shujia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jing-Yu Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
4
|
The Pathology of Primary Familial Brain Calcification: Implications for Treatment. Neurosci Bull 2022; 39:659-674. [PMID: 36469195 PMCID: PMC10073384 DOI: 10.1007/s12264-022-00980-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/10/2022] [Indexed: 12/08/2022] Open
Abstract
AbstractPrimary familial brain calcification (PFBC) is an inherited neurodegenerative disorder mainly characterized by progressive calcium deposition bilaterally in the brain, accompanied by various symptoms, such as dystonia, ataxia, parkinsonism, dementia, depression, headaches, and epilepsy. Currently, the etiology of PFBC is largely unknown, and no specific prevention or treatment is available. During the past 10 years, six causative genes (SLC20A2, PDGFRB, PDGFB, XPR1, MYORG, and JAM2) have been identified in PFBC. In this review, considering mechanistic studies of these genes at the cellular level and in animals, we summarize the pathogenesis and potential preventive and therapeutic strategies for PFBC patients. Our systematic analysis suggests a classification for PFBC genetic etiology based on several characteristics, provides a summary of the known composition of brain calcification, and identifies some potential therapeutic targets for PFBC.
Collapse
|
5
|
Coursimault J, Cassinari K, Lecoquierre F, Quenez O, Coutant S, Derambure C, Vezain M, Drouot N, Vera G, Schaefer E, Philippe A, Doray B, Lambert L, Ghoumid J, Smol T, Rama M, Legendre M, Lacombe D, Fergelot P, Olaso R, Boland A, Deleuze JF, Goldenberg A, Saugier-Veber P, Nicolas G. Deep intronic NIPBL de novo mutations and differential diagnoses revealed by whole genome and RNA sequencing in Cornelia de Lange syndrome patients. Hum Mutat 2022; 43:1882-1897. [PMID: 35842780 DOI: 10.1002/humu.24438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/23/2022] [Accepted: 07/09/2022] [Indexed: 01/25/2023]
Abstract
Cornelia de Lange syndrome (CdLS; MIM# 122470) is a rare developmental disorder. Pathogenic variants in 5 genes explain approximately 50% cases, leaving the other 50% unsolved. We performed whole genome sequencing (WGS) ± RNA sequencing (RNA-seq) in 5 unsolved trios fulfilling the following criteria: (i) clinical diagnosis of classic CdLS, (ii) negative gene panel sequencing from blood and saliva-isolated DNA, (iii) unaffected parents' DNA samples available and (iv) proband's blood-isolated RNA available. A pathogenic de novo mutation (DNM) was observed in a CdLS differential diagnosis gene in 3/5 patients, namely POU3F3, SPEN, and TAF1. In the other two, we identified two distinct deep intronic DNM in NIPBL predicted to create a novel splice site. RT-PCRs and RNA-Seq showed aberrant transcripts leading to the creation of a novel frameshift exon. Our findings suggest the relevance of WGS in unsolved suspected CdLS cases and that deep intronic variants may account for a proportion of them.
Collapse
Affiliation(s)
- Juliette Coursimault
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Kévin Cassinari
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - François Lecoquierre
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Sophie Coutant
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Céline Derambure
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Myriam Vezain
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Nathalie Drouot
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gabriella Vera
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Elise Schaefer
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Anaïs Philippe
- Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bérénice Doray
- Service de Génétique Médicale, Centre Hospitalier Universitaire Félix Guyon, Bellepierre Saint Denis, France
| | - Laëtitia Lambert
- Service de Génétique Clinique, CHRU NANCY, F-54000 France, UMR INSERM U 1256 N-GERE, F-54000, Nancy, France
| | - Jamal Ghoumid
- Université de Lille, ULR7364 RADEME, CHU Lille, Clinique de Génétique « Guy Fontaine », and FHU-G4 Génomique, F-59000, Lille, France
| | - Thomas Smol
- Université de Lille, ULR7364 RADEME, CHU Lille, Institut de Génétique Médicale, and FHU-G4 Génomique, F-59000, Lille, France
| | - Mélanie Rama
- Institut de Génétique Médicale, CHU de Lille, France
| | - Marine Legendre
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Didier Lacombe
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Patricia Fergelot
- INSERM U1211, Université de Bordeaux; Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine (CNRGH), 91057, Evry, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Pascale Saugier-Veber
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and reference center for developmental disorders, FHU-G4 Génomique, F-76000, Rouen, France
| |
Collapse
|