1
|
Mu Z, Cao B, Wang P, Wang B, Zhang Q. RBS: A Rotational Coding Based on Blocking Strategy for DNA Storage. IEEE Trans Nanobioscience 2023; 22:912-922. [PMID: 37028365 DOI: 10.1109/tnb.2023.3254514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The data volume of global information has grown exponentially in recent years, but the development of silicon-based memory has entered a bottleneck period. Deoxyribonucleic acid (DNA) storage is drawing attention owing to its advantages of high storage density, long storage time, and easy maintenance. However, the base utilization and information density of existing DNA storage methods are insufficient. Therefore, this study proposes a rotational coding based on blocking strategy (RBS) for encoding digital information such as text and images in DNA data storage. This strategy satisfies multiple constraints and produces low error rates in synthesis and sequencing. To illustrate the superiority of the proposed strategy, it was compared and analyzed with existing strategies in terms of entropy value change, free energy size, and Hamming distance. The experimental results show that the proposed strategy has higher information storage density and better coding quality in DNA storage, so it will improve the efficiency, practicality, and stability of DNA storage.
Collapse
|
2
|
Zheng Y, Cao B, Wu J, Wang B, Zhang Q. High Net Information Density DNA Data Storage by the MOPE Encoding Algorithm. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2992-3000. [PMID: 37015121 DOI: 10.1109/tcbb.2023.3263521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
DNA has recently been recognized as an attractive storage medium due to its high reliability, capacity, and durability. However, encoding algorithms that simply map binary data to DNA sequences have the disadvantages of low net information density and high synthesis cost. Therefore, this paper proposes an efficient, feasible, and highly robust encoding algorithm called MOPE (Modified Barnacles Mating Optimizer and Payload Encoding). The Modified Barnacles Mating Optimizer (MBMO) algorithm is used to construct the non-payload coding set, and the Payload Encoding (PE) algorithm is used to encode the payload. The results show that the lower bound of the non-payload coding set constructed by the MBMO algorithm is 3%-18% higher than the optimal result of previous work, and theoretical analysis shows that the designed PE algorithm has a net information density of 1.90 bits/nt, which is close to the ideal information capacity of 2 bits per nucleotide. The proposed MOPE encoding algorithm with high net information density and satisfying constraints can not only effectively reduce the cost of DNA synthesis and sequencing but also reduce the occurrence of errors during DNA storage.
Collapse
|
3
|
Du H, Zhou S, Yan W, Wang S. Study on DNA Storage Encoding Based IAOA under Innovation Constraints. Curr Issues Mol Biol 2023; 45:3573-3590. [PMID: 37185757 PMCID: PMC10136724 DOI: 10.3390/cimb45040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
With the informationization of social processes, the amount of related data has greatly increased, making traditional storage media unable to meet the current requirements for data storage. Due to its advantages of a high storage capacity and persistence, deoxyribonucleic acid (DNA) has been considered the most prospective storage media to solve the data storage problem. Synthesis is an important process for DNA storage, and low-quality DNA coding can increase errors during sequencing, which can affect the storage efficiency. To reduce errors caused by the poor stability of DNA sequences during storage, this paper proposes a method that uses the double-matching and error-pairing constraints to improve the quality of the DNA coding set. First, the double-matching and error-pairing constraints are defined to solve problems of sequences with self-complementary reactions in the solution that are prone to mismatch at the 3' end. In addition, two strategies are introduced in the arithmetic optimization algorithm, including a random perturbation of the elementary function and a double adaptive weighting strategy. An improved arithmetic optimization algorithm (IAOA) is proposed to construct DNA coding sets. The experimental results of the IAOA on 13 benchmark functions show a significant improvement in its exploration and development capabilities over the existing algorithms. Moreover, the IAOA is used in the DNA encoding design under both traditional and new constraints. The DNA coding sets are tested to estimate their quality regarding the number of hairpins and melting temperature. The DNA storage coding sets constructed in this study are improved by 77.7% at the lower boundary compared to existing algorithms. The DNA sequences in the storage sets show a reduction of 9.7-84.1% in the melting temperature variance, and the hairpin structure ratio is reduced by 2.1-80%. The results indicate that the stability of the DNA coding sets is improved under the two proposed constraints compared to traditional constraints.
Collapse
Affiliation(s)
- Haigui Du
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Shihua Zhou
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - WeiQi Yan
- School of Engineering, Computer and Mathematical Sciences, Auckland University of Technology, Auckland 1010, New Zealand
| | - Sijie Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| |
Collapse
|
4
|
Cao B, Wang B, Zhang Q. GCNSA: DNA storage encoding with a graph convolutional network and self-attention. iScience 2023; 26:106231. [PMID: 36876131 PMCID: PMC9982308 DOI: 10.1016/j.isci.2023.106231] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
DNA Encoding, as a key step in DNA storage, plays an important role in reading and writing accuracy and the storage error rate. However, currently, the encoding efficiency is not high enough and the encoding speed is not fast enough, which limits the performance of DNA storage systems. In this work, a DNA storage encoding system with a graph convolutional network and self-attention (GCNSA) is proposed. The experimental results show that DNA storage code constructed by GCNSA increases by 14.4% on average under the basic constraints, and by 5%-40% under other constraints. The increase of DNA storage codes effectively improves the storage density of 0.7-2.2% in the DNA storage system. The GCNSA predicted more DNA storage codes in less time while ensuring the quality of codes, which lays a foundation for higher read and write efficiency in DNA storage.
Collapse
Affiliation(s)
- Ben Cao
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education, School of Software Engineering, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Ibrahim OAS, Younis EMG. Combining variable neighborhood with gradient ascent for learning to rank problem. Neural Comput Appl 2023. [DOI: 10.1007/s00521-023-08412-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractMetaheuristic applications for information retrieval research are limited in spite of the importance of this problem domain. Ranking the retrieved documents based on their importance is a vital issue for the scientific and industrial communities. This paper proposes a novel variable neighborhood search (VNS) algorithm with adaptation based on an objective function for the learning to rank (LTR) problem. VNS is a global optimum metaheuristic algorithm that has been engaged to evolve the optimal solutions for heuristic problems based on exploring better neighbor solutions from the current one. The changes from the current to the next optimal solution are made during the perturbation stage to identify the global optimal solutions. The exploration procedure has been made through various mutation step sizes, whereas the exploitation process has been done by checking the quality of the evolved solutions using the fitness function. This research proposes a novel version of VNS based on four random probability distributions with gradient ascent. In addition to using the traditional random generator with gradient ascent for modifying the mutated genes of the neighborhood candidate solution in the following evolving iteration. This novel method in LTR is called gradient variable neighborhood (GVN). In the experiments, we utilized Microsoft Bing search (MSLR-WEB30K), Yahoo, and TREC Million Queries Competitions in 2008 and 2007 (LETOR 4) datasets. From the findings of the results, we can deduce that the GVN method outperformed recent studies on LTR methods.
Collapse
|
6
|
An Improved Gradient-Based Optimization Algorithm for Solving Complex Optimization Problems. Processes (Basel) 2023. [DOI: 10.3390/pr11020498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
In this paper, an improved gradient-based optimizer (IGBO) is proposed with the target of improving the performance and accuracy of the algorithm for solving complex optimization and engineering problems. The proposed IGBO has the added features of adjusting the best solution by adding inertia weight, fast convergence rate with modified parameters, as well as avoiding the local optima using a novel functional operator (G). These features make it feasible for solving the majority of the nonlinear optimization problems which is quite hard to achieve with the original version of GBO. The effectiveness and scalability of IGBO are evaluated using well-known benchmark functions. Moreover, the performance of the proposed algorithm is statistically analyzed using ANOVA analysis, and Holm–Bonferroni test. In addition, IGBO was assessed by solving well-known real-world problems. The results of benchmark functions show that the IGBO is very competitive, and superior compared to its competitors in finding the optimal solutions with high convergence and coverage. The results of the studied real optimization problems prove the superiority of the proposed algorithm in solving real optimization problems with difficult and indefinite search domains.
Collapse
|
7
|
Daoud MS, Shehab M, Al-Mimi HM, Abualigah L, Zitar RA, Shambour MKY. Gradient-Based Optimizer (GBO): A Review, Theory, Variants, and Applications. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2022; 30:2431-2449. [PMID: 36597494 PMCID: PMC9801167 DOI: 10.1007/s11831-022-09872-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
This paper introduces a comprehensive survey of a new population-based algorithm so-called gradient-based optimizer (GBO) and analyzes its major features. GBO considers as one of the most effective optimization algorithm where it was utilized in different problems and domains, successfully. This review introduces set of related works of GBO where distributed into; GBO variants, GBO applications, and evaluate the efficiency of GBO compared with other metaheuristic algorithms. Finally, the conclusions concentrate on the existing work on GBO, showing its disadvantages, and propose future works. The review paper will be helpful for the researchers and practitioners of GBO belonging to a wide range of audiences from the domains of optimization, engineering, medical, data mining and clustering. As well, it is wealthy in research on health, environment and public safety. Also, it will aid those who are interested by providing them with potential future research.
Collapse
Affiliation(s)
| | - Mohammad Shehab
- Faculty of Computer Sciences and Informatics, Amman Arab University, Amman, 11953 Jordan
| | - Hani M. Al-Mimi
- Department of Cybersecurity, Al-Zaytoonah University, Amman, Jordan
| | - Laith Abualigah
- Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al Al-Bayt University, Mafraq, 25113 Jordan
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman, 19328 Jordan
- Faculty of Information Technology, Middle East University, Amman, 11831 Jordan
- Applied Science Research Center, Applied Science Private University, Amman, 11931 Jordan
- School of Computer Sciences, Universiti Sains Malaysia, 11800 George Town, Pulau Pinang Malaysia
- Center for Engineering Application &
Technology Solutions, Ho Chi Minh City Open University, Ho Chi Minh, Viet Nam
| | - Raed Abu Zitar
- Sorbonne Center of Artificial Intelligence, Sorbonne University-Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Mohd Khaled Yousef Shambour
- The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Mecca, Saudi Arabia
| |
Collapse
|
8
|
Adaptive coding for DNA storage with high storage density and low coverage. NPJ Syst Biol Appl 2022; 8:23. [PMID: 35788589 PMCID: PMC9253015 DOI: 10.1038/s41540-022-00233-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/10/2022] [Indexed: 11/09/2022] Open
Abstract
The rapid development of information technology has generated substantial data, which urgently requires new storage media and storage methods. DNA, as a storage medium with high density, high durability, and ultra-long storage time characteristics, is promising as a potential solution. However, DNA storage is still in its infancy and suffers from low space utilization of DNA strands, high read coverage, and poor coding coupling. Therefore, in this work, an adaptive coding DNA storage system is proposed to use different coding schemes for different coding region locations, and the method of adaptively generating coding constraint thresholds is used to optimize at the system level to ensure the efficient operation of each link. Images, videos, and PDF files of size 698 KB were stored in DNA using adaptive coding algorithms. The data were sequenced and losslessly decoded into raw data. Compared with previous work, the DNA storage system implemented by adaptive coding proposed in this paper has high storage density and low read coverage, which promotes the development of carbon-based storage systems.
Collapse
|
9
|
Cui X, Liu Y, Zhang Q. DNA tile self-assembly driven by antibody-mediated four-way branch migration. Analyst 2022; 147:2223-2230. [DOI: 10.1039/d1an02273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The antibody-mediated four-way branch migration mechanism provides a novel idea for realizing the assembly of nanostructures, simply by attaching structures such as tiles, proteins, quantum dots, etc. to the ends of the four-way branches.
Collapse
Affiliation(s)
- Xingdi Cui
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
| | - Yuan Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Ministry of Education, Dalian 116622, China
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Wu J, Zheng Y, Wang B, Zhang Q. Enhancing Physical and Thermodynamic Properties of DNA Storage Sets with End-constraint. IEEE Trans Nanobioscience 2021; 21:184-193. [PMID: 34662278 DOI: 10.1109/tnb.2021.3121278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
With the explosion of data, DNA is considered as an ideal carrier for storage due to its high storage density. However, low-quality DNA sets hamper the widespread use of DNA storage. This work proposes a new method to design high-quality DNA storage sets. Firstly, random switch and double-weight offspring strategies are introduced in Double-strategy Black Widow Optimization Algorithm (DBWO). Experimental results of 26 benchmark functions show that the exploration and exploitation abilities of DBWO are greatly improved from previous work. Secondly, DBWO is applied in designing DNA storage sets, and compared with previous work, the lower bounds of storage sets are boosted by 9%-37%. Finally, to improve the poor stabilities of sequences, the End-constraint is proposed in designing DNA storage sets. By measuring the number of hairpin structures, melting temperature, and minimum free energy, it is evaluated that with our innovative constraint, DBWO can construct not only a larger number of storage sets, but also enhance physical and thermodynamic properties of DNA storage sets.
Collapse
|