1
|
Lv Y, Niu L, Li Q, Shao W, Yan X, Li Y, Yue Y, Chen H. Identification of an immune-related eRNA prognostic signature for clear cell renal cell carcinoma. Aging (Albany NY) 2024; 16:2232-2248. [PMID: 38289619 PMCID: PMC10911372 DOI: 10.18632/aging.205479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/01/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Immune-related enhancer RNAs (eRNAs) have garnered significant attention in cancer metabolism research, yet their specific roles in ccRCC have remained elusive. METHODS We retrieved eRNA expression profiles from TCGA database and identified immune-related eRNAs (IREs) by assessing their co-expression with immune genes. Utilizing consensus clustering, we organized these IREs into two distinct clusters. The construction of an IREs signature was accomplished through the LASSO and multivariate Cox analysis. Furthermore, we performed Cell Counting Kit-8 and clonogenic assays to assess changes in the proliferative capacity of Caki-1 and 769-P cells. RESULTS The existence of two clusters of immune-related eRNAs in ccRCC, each with distinctive prognostic and immunological attributes. Cluster B exhibited immunosuppressive properties and displayed a positive correlation with immunosuppressive cells. Functional enrichment analysis unveiled their involvement in several tumor-promoting pathways, metabolic pathways and immune pathways. The IREs signature demonstrated its potential to accurately predict patient immune and prognostic characteristics. AC003092.1, an eRNA strongly associated with patient survival, emerged as a potential oncogene significantly linked to adverse prognosis and the presence of immunosuppressive cells and checkpoints in ccRCC patients. Notably, AC003092.1 displayed marked upregulation in ccRCC tissues and cell lines, and its knockdown substantially inhibited the proliferation of Caki-1 and 769-P cells. CONCLUSION We established a robust predictive model that played a vital role in determining the prognosis, clinicopathological characteristics and immune cell infiltration patterns of ccRCC patients. IRE, particularly AC003092.1, which was strongly associated with survival, hold promise as novel immunotherapeutic targets for ccRCC.
Collapse
Affiliation(s)
- Yang Lv
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| | - Lili Niu
- Central Laboratory, First Affiliated Hospital, Institute (College) of Integrative Medicine, Dalian Medical University, Dalian 116021, China
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Qiang Li
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenchuan Shao
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghan Yan
- Department of Urology, The State Key Lab of Reproductive, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yang Li
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Yulin Yue
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hongqi Chen
- Department of Urology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou 215228, China
| |
Collapse
|
2
|
Hadwiger JA, Aranda RG, Fatima S. Atypical MAP kinases - new insights and directions from amoeba. J Cell Sci 2023; 136:jcs261447. [PMID: 37850857 PMCID: PMC10617611 DOI: 10.1242/jcs.261447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have been the focus of many studies over the past several decades, but the understanding of one subgroup of MAPKs, orthologs of MAPK15, known as atypical MAPKs, has lagged behind others. In most organisms, specific activating signals or downstream responses of atypical MAPK signaling pathways have not yet been identified even though these MAPKs are associated with many eukaryotic processes, including cancer and embryonic development. In this Review, we discuss recent studies that are shedding new light on both the regulation and function of atypical MAPKs in different organisms. In particular, the analysis of the atypical MAPK in the amoeba Dictyostelium discoideum has revealed important roles in chemotactic responses and gene regulation. The rapid and transient phosphorylation of the atypical MAPK in these responses suggest a highly regulated activation mechanism in vivo despite the ability of atypical MAPKs to autophosphorylate in vitro. Atypical MAPK function can also impact the activation of other MAPKs in amoeba. These advances are providing new perspectives on possible MAPK roles in animals that have not been previously considered, and this might lead to the identification of potential targets for regulating cell movement in the treatment of diseases.
Collapse
Affiliation(s)
- Jeffrey A. Hadwiger
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Ramee G. Aranda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| | - Saher Fatima
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078-3020, USA
| |
Collapse
|
3
|
Li Q, Xiao X, Chen B, Song G, Zeng K, Li B, Miao J, Liu C, Luan Y, Liu B. A predictive signature based on enhancer RNA associates with immune infiltration and aids treatment decision in clear cell renal cell carcinoma. Front Oncol 2022; 12:964838. [PMID: 36313627 PMCID: PMC9597358 DOI: 10.3389/fonc.2022.964838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a prevalent urinary malignancy. Despite the recent development of better diagnostic tools and therapy, the five-year survival rate for individuals with advanced and metastatic ccRCC remains dismal. Unfortunately, ccRCC is less susceptible to radiation and chemotherapy. Consequently, targeted therapy and immunotherapy play a crucial role in the treatment of ccRCC. Enhancer RNAs (eRNAs) are noncoding RNAs transcribed by enhancers. Extensive research has shown that eRNAs are implicated in a variety of cancer signaling pathways. However, the biological functions of eRNAs have not been systematically investigated in ccRCC. In this study, we conducted a comprehensive investigation of the role of eRNAs in the onset and management of ccRCC. Patient prognosis-influencing eRNAs and target genes were chosen to construct a predictive signature. On the basis of the median riskscore, ccRCC patients were split into high- and low-risk subgroups. The prediction efficiency was assessed in several cohorts, and multi-omics analysis was carried out to investigate the differences and underlying mechanisms between the high- and low-risk groups. In addition, we investigated its potential to facilitate clinical treatment choices. The riskscore might be used to forecast a patient’s response to immunotherapy and targeted therapy, giving a revolutionary method for selecting treatment regimens with pinpoint accuracy.
Collapse
Affiliation(s)
- Qinyu Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xueyan Xiao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingliang Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoda Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zeng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Beining Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianping Miao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaofan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Yang Luan, ; Chaofan Liu,
| | - Yang Luan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Yang Luan, ; Chaofan Liu,
| | - Bo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bo Liu, ; Yang Luan, ; Chaofan Liu,
| |
Collapse
|
4
|
Zhang R, Liu F. Cancer-associated fibroblast-derived gene signatures predict radiotherapeutic survival in prostate cancer patients. J Transl Med 2022; 20:453. [PMID: 36195908 PMCID: PMC9533530 DOI: 10.1186/s12967-022-03656-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) play multiple roles in regulating tumor metastasis and treatment response. Current clinical indicators are insufficient to accurately assess disease risk and radiotherapy response, emphasizing the urgent need for additional molecular prognostic markers. METHODS In order to investigate CAF-related genes associated with radiotherapy and construct prognostic CAF-related gene signatures for prostate cancer, we firstly established a radio-resistant prostate CAF cell subline (referred to as CAFR) from Mus-CAF (referred to as CAF) through fractionated irradiation using X-rays. Transcriptome sequencing for CAF and CAFR was conducted, and 2626 CAF-related differentially expressed genes (DEGs) associated with radiotherapy were identified. Human homologous genes of mouse CAF-related DEGs were then obtained. RESULTS Functional enrichment analysis revealed that these CAF-related DEGs were significantly enriched ECM- and immune-related functions and pathways. Based on GSE116918 dataset, 186 CAF-related DEGs were correlated with biochemical recurrence-free survival (BCRFS) of prostate cancer patients, 16 of which were selected to construct a BCRFS-related CAF signature, such as ACPP, THBS2, and KCTD14; 142 CAF-related DEGs were correlated with metastasis-free survival (MFS), 16 of which were used to construct a MFS-related CAF signature, such as HOPX, TMEM132A, and ZNF467. Both Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets confirmed that the two CAF signatures accurately predicted BCRFS and MFS of prostate cancer patients. The risk scores were higher in patients with higher gleason grades and higher clinical T stages. Moreover, the BCRFS-related CAF signature was an independent prognostic factor and a nomogram consisting of BCRFS-related CAF signature and various clinical factors accurately predicted 2-, 3-, and 5-year survival time of prostate cancer patients. Furthermore, the risk score was positively correlated with multiple immune checkpoints. CONCLUSIONS Our established CAF signatures could accurately predict BCRFS and MFS in prostate cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Ran Zhang
- Laboratory of Radio-Immunology, Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, People's Republic of China
| | - Feng Liu
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Mou Z, Spencer J, Knight B, John J, McCullagh P, McGrath JS, Harries LW. Gene expression analysis reveals a 5-gene signature for progression-free survival in prostate cancer. Front Oncol 2022; 12:914078. [PMID: 36033512 PMCID: PMC9413154 DOI: 10.3389/fonc.2022.914078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) is the second most common male cancer worldwide, but effective biomarkers for the presence or progression risk of disease are currently elusive. In a series of nine matched histologically confirmed PCa and benign samples, we carried out an integrated transcriptome-wide gene expression analysis, including differential gene expression analysis and weighted gene co-expression network analysis (WGCNA), which identified a set of potential gene markers highly associated with tumour status (malignant vs. benign). We then used these genes to establish a minimal progression-free survival (PFS)-associated gene signature (GS) (PCBP1, PABPN1, PTPRF, DANCR, and MYC) using least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analyses from The Cancer Genome Atlas prostate adenocarcinoma (TCGA-PRAD) dataset. Our signature was able to predict PFS over 1, 3, and 5 years in TCGA-PRAD dataset, with area under the curve (AUC) of 0.64–0.78, and our signature remained as a prognostic factor independent of age, Gleason score, and pathological T and N stages. A nomogram combining the signature and Gleason score demonstrated improved predictive capability for PFS (AUC: 0.71–0.85) and was superior to the Cambridge Prognostic Group (CPG) model alone and some conventionally used clinicopathological factors in predicting PFS. In conclusion, we have identified and validated a novel five-gene signature and established a nomogram that effectively predicted PFS in patients with PCa. Findings may improve current prognosis tools for PFS and contribute to clinical decision-making in PCa treatment.
Collapse
Affiliation(s)
- Zhuofan Mou
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
| | - Jack Spencer
- Translational Research Exchange at Exeter, Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Bridget Knight
- National Institute for Health and Care Research (NIHR) Exeter Clinical Research Facility, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| | - Joseph John
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - John S. McGrath
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter National Health Service (NHS) Foundation Trust, Exeter, United Kingdom
| | - Lorna W. Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Devon, United Kingdom
- *Correspondence: Lorna W. Harries,
| |
Collapse
|
6
|
Enhancer RNAs (eRNAs) in Cancer: The Jacks of All Trades. Cancers (Basel) 2022; 14:cancers14081978. [PMID: 35454885 PMCID: PMC9030334 DOI: 10.3390/cancers14081978] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary This review focuses on eRNAs and the several mechanisms by which they can regulate gene expression. In particular we describe here the most recent examples of eRNAs dysregulated in cancer or involved in the immune escape of tumor cells. Abstract Enhancer RNAs (eRNAs) are non-coding RNAs (ncRNAs) transcribed in enhancer regions. They play an important role in transcriptional regulation, mainly during cellular differentiation. eRNAs are tightly tissue- and cell-type specific and are induced by specific stimuli, activating promoters of target genes in turn. eRNAs usually have a very short half-life but in some cases, once activated, they can be stably expressed and acquire additional functions. Due to their critical role, eRNAs are often dysregulated in cancer and growing number of interactions with chromatin modifiers, transcription factors, and splicing machinery have been described. Enhancer activation and eRNA transcription have particular relevance also in inflammatory response, placing the eRNAs at the interplay between cancer and immune cells. Here, we summarize all the possible molecular mechanisms recently reported in association with eRNAs activity.
Collapse
|