1
|
Gao Y, Wang S, He Y, Ma Y, Wang S. Transcriptional profiling of exosomes derived from serum of patients with rare earth pneumoconiosis by RNA-sequencing and PI3K/Akt pathway is activated in lung of mice exposed to rare earth Nd 2O 3. Toxicol Lett 2025:S0378-4274(25)00001-3. [PMID: 39756494 DOI: 10.1016/j.toxlet.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/25/2024] [Accepted: 01/03/2025] [Indexed: 01/07/2025]
Abstract
Rare earth is used extensively around the world, and rare earth particles cause a respiratory disease in workers termed rare earth pneumoconiosis(REP) that have attracted considerable attention. However, the mechanisms of REP, characterized by diffuse pulmonary fibrosis, are elusive. REP progression involves various signaling pathway networks comprising numerous cell types and cytokines. Acting as an important medium for communication between cells, exosomes are emerging as a major research topic. However, the role of exosomal lncRNAs, miRNAs and mRNAs in REP remains unclear. In the present study, we conducted high-throughput RNA sequencing to generate long non-coding RNA(lncRNA), microRNA (miRNA) and mRNA profiles from the serum exosomes of nine patients with rare earth pneumoconiosis and nine healthy people. Our results identified a total of 94 lncRNAs, 93miRNAs, and 29 mRNAs were differentially expressed in the serum exosomes of patients with rare earth pneumoconiosis. Subsequently, Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used to analyze the differentially expressed RNAs. The abundant enriched GO terms of exosomal genes are cytoplasm, protein binding, cytoskeleton, Nuclear cytoplasmic transport, and KEGG pathways of exosomal genes included metabolic and cancer pathway, PI3K/Akt, wnt, mTOR, HIF-1, actin cytoskeleton and cell cycle and so on. RT-qPCR results showed that lnc-KCNMB2-AS1, hsa-miR-186-5p, hsa-miR-100-5p, hsa-miR-381-5p, NCOA4 and PLXDC1 were up-regulated, and lnc-TMEM151A, hsa-miR-758-5p and hsa-miR-6842-5p were significantly down-regulated in exosomes. In addition, our study fuond that the PI3K/Akt pathway was activated, and the expression level of miR-100-5p was increased synchronously in lung tissue of mice exposed to rare earth Nd2O3. In this study, PI3K/Akt pathway is significant helpful in elucidating the mechanism of REP. These findings can provide new insights into the mechanism of REP and develop a novel treatment strategy and biomarker.
Collapse
Affiliation(s)
- Yanrong Gao
- Department of Public Health,International College,Krirk University, Bangkok 10220, Thailand
| | - Shurui Wang
- School of Public Health, Capital Medical University,Beijing 100069,China
| | - Yuanqi He
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yupeng Ma
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Suhua Wang
- Department of Public Health,International College,Krirk University, Bangkok 10220, Thailand; School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China.
| |
Collapse
|
2
|
Constantin M, Chifiriuc MC, Vrancianu CO, Petrescu L, Cristian RE, Crunteanu I, Grigore GA, Chioncel MF. Insights into the effects of lanthanides on mammalian systems and potential applications. ENVIRONMENTAL RESEARCH 2024; 263:120235. [PMID: 39461700 DOI: 10.1016/j.envres.2024.120235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
Lanthanides, a group of elements with unique chemical properties, have garnered significant attention for their varied biological effects, ranging from cytotoxic to protective, depending on concentration, cell type, and exposure conditions. This review provides a detailed examination of the biological interactions of lanthanides with mammalian systems, including humans, by exploring their impact on different cell lines and organisms. Through a systematic assessment of current research, this work highlights the dual nature of lanthanides, identifying them as both potential therapeutic agents and environmental toxins. Furthermore, it underscores the importance of understanding their mechanisms to mitigate health risks, particularly for those exposed occupationally or via environmental sources. The review concludes with an overview of knowledge gaps and future research directions necessary for unlocking the therapeutic potential of lanthanides while ensuring safety and sustainability in their applications.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, 060031, Bucharest, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania.
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania.
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania
| | - Ioana Crunteanu
- Faculty of Medicine, Titu Maiorescu University, Bucharest, Romania
| | - Georgiana Alexandra Grigore
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031, Bucharest, Romania
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Wang S, Ma Y, Li W, Zhao Y, Gao Y, Wang S. LncRNA SNHG5/IGF2BP1/Occludin axis regulates Nd 2O 3 induced blood-testis barrier disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 358:124527. [PMID: 38992831 DOI: 10.1016/j.envpol.2024.124527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Neodymium oxide (Nd2O3) is a rare earth element that can lead to various type of tissue and organ damage with prolonged exposure. The long noncoding RNA small nucleolar ribonucleic acid host gene 5 (lncRNA SNHG5) plays a role in disease progressiong. However, its connection with Nd2O3 induced reproductive harm in males has not been thoroughly investigated. Our research discovered that exposure to Nd2O3 increases the expression of SNHG5 in the testes of mice, which in turn binds directly to and reduces in the protein levels of insulin like growth factor 2 mRNA-binding protein 1 (IGF2BP1) both in vivo and in vitro. This process disrupts the cytoskeleton of blood-testis barrier(BTB) by impacting the stability of the tight junction protein Occludin (Ocln) mRNA structure and the permeability of the BTB. In summary, our study elucidates the regulatory mechanism of SNHG5/IGF2BP1/Occludin axis in Nd2O3-induced BTB injury, providing valuable insights for the treatment of male infertility.
Collapse
Affiliation(s)
- Shurui Wang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Yupeng Ma
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Wenjie Li
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou, 014030, Inner Mongolia, PR China.
| |
Collapse
|
4
|
Bu N, Wang S, Ma Y, Xia H, Zhao Y, Shi X, Liu Q, Wang S, Gao Y. The lncRNA H19/miR-29a-3p/SNIP1/c-myc regulatory axis is involved in pulmonary fibrosis induced by Nd2O3. Toxicol Sci 2023; 197:27-37. [PMID: 37831906 DOI: 10.1093/toxsci/kfad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Some rare earth elements are occupational and environmental toxicants and can cause organ and systemic damage; therefore, they have attracted global attention. Neodymium oxide (Nd2O3) is a rare earth element that is refined and significantly utilized in China. The long noncoding RNA (lncRNA) H19 is encoded by the H19/IGF2 imprinted gene cluster located on human chromosome 11p15.5. H19 has become a research focus due to its ectopic expression leading to the promotion of fibrosis. However, the mechanisms by which it causes pulmonary fibrosis are elusive. This investigation indicates that biologically active Nd2O3 increases H19, SNIP1, and c-myc, decreases miR-29a-3p, accelerates macrophage M2 polarization, and causes pulmonary fibrosis in mice lung tissues. In macrophage-differentiated THP-1 cells, Nd2O3 (25 μg/ml) enhanced H19, SNIP1, and c-myc, reduced miR-29a-3p, accelerated macrophages M2 polarization, and stimulated fibrogenic cytokine (TGF-β1) secretion. Furthermore, the coculturing of Nd2O3-treated macrophage-differentiated THP-1 cells. And human embryonic lung fibroblast cells activated lung fibroblast, which increases the levels of collagen I, α-SMA, p-Smad2/3, and Smad4, whereas H19 knockdown or miR-29a-3p upregulation in macrophages had opposite effects. Moreover, it was revealed that H19/miR-29a-3p/SNIP1/c-myc regulatory axis is involved in pulmonary fibrosis induced by Nd2O3. Therefore, this study provides new molecular insights into the mechanism of pulmonary fibrosis by Nd2O3.
Collapse
Affiliation(s)
- Ning Bu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Shurui Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yupeng Ma
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Haibo Xia
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Xuemin Shi
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Qizhan Liu
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Center for Global Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| |
Collapse
|
5
|
Wang S, Bu N, Yun Y, Shi X, Wang S, Gao Y. RNA-Seq Analysis of Testes from Mice Exposed to Neodymium Oxide. TOXICS 2023; 11:952. [PMID: 38133353 PMCID: PMC10748220 DOI: 10.3390/toxics11120952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
(1) Objective: Rare earth neodymium oxide (Nd2O3) is refined and used extensively around the world, and the occupational and environmental safety of rare piles of the earth has attracted considerable attention. Nd2O3 enters the human body through the respiratory system, reaches various organs through blood circulation, and accumulates to produce toxic effects. At present, little is known about the reproductive toxicity of Nd2O3. Non-coding RNAs participate in a variety of physiological activities and are very important for spermatogenesis. However, it is unknown whether they are involved in Nd2O3-induced reproductive toxicity. Therefore, we conducted a pathological analysis, sperm quality testing, and RNA-seq on the testicular tissue of mice exposed to Nd2O3 to find the key genes and regulatory pathways of male reproductive damage and explore the early biomarkers and mechanisms of reproductive damage caused by Nd2O3. (2) Methods: After exposure of mice to Nd2O3, we carried out a pathological analysis and RNA-seq analysis for miRNAs/lncRNAs/circRNAs/mRNAs on the testicular tissue of mice, and the total RNAs were used to investigate miRNA/lncRNA/circRNA/mRNA expression profiles by strand-specific RNA sequencing at the transcriptome level to help uncover RNA-related mechanisms in Nd2O3-induced toxicity. (3) Results: Nd2O3 damaged testis and sperm morphology, significantly decreased the number of sperm, and deformed the sperm head and tail. RNA-seq analysis showed that the expression level of mRNA/miRNA/circRNA/lncRNA in the testicular tissue of mice exposed to Nd2O3 is abnormal. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the functional enrichment of differentially expressed genes (DEGs) and their target genes was closely related to the related pathway of spermatogenesis. Furthermore, some miRNAs/lncRNAs/circRNAs that were greatly upregulated or inducibly expressed, implying their potential value as candidate markers for Nd2O3-induced reproductive toxicity, help us to further investigate the mechanisms of key genes, key signaling pathways, and inter-gene regulation for Nd2O3-induced reproductive toxicity. (4) Conclusions: This study provides the first database of a Nd2O3-induced transcriptome. This information is useful for the development of biomarkers of Nd2O3-induced reproductive injury and promotes understanding of the reproductive toxicity mechanism of Nd2O3.
Collapse
Affiliation(s)
- Shurui Wang
- Baotou Medical College, Baotou 014042, China; (S.W.); (Y.Y.); (X.S.)
| | - Ning Bu
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China;
| | - Yudan Yun
- Baotou Medical College, Baotou 014042, China; (S.W.); (Y.Y.); (X.S.)
| | - Xuemin Shi
- Baotou Medical College, Baotou 014042, China; (S.W.); (Y.Y.); (X.S.)
| | - Suhua Wang
- Wulanchabu Medical College, Wulanchabu 012001, China
| | - Yanrong Gao
- Baotou Medical College, Baotou 014042, China; (S.W.); (Y.Y.); (X.S.)
| |
Collapse
|
6
|
Chu X, Wu D, Zhang C, Hu S. Expression pattern of miR-16-2-3p and its prognostic values on pediatric acute lymphoblastic leukemia. Scand J Clin Lab Invest 2023:1-5. [PMID: 37093849 DOI: 10.1080/00365513.2023.2191335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is a debilitating illness that easily occurs in adolescents. microRNAs (miRNAs) are potential biomarkers for multiple diseases. This paper was to elaborate on the expression of miR-16-2-3p in childhood ALL and its clinical values on ALL diagnosis and prognosis. First, serum miR-16-2-3p expression in ALL children and healthy volunteers was measured using RT-qPCR. Next, diagnostic potential and prognostic values of miR-16-2-3p on ALL were analyzed through receiver operating characteristic (ROC) curve, Kaplan-Meier survival curve, and multivariate Cox regression analysis, respectively. No significant difference was observed in the clinical baseline data between ALL patients and healthy children. ALL patients showed downregulated serum miR-16-2-3p (0.65 ± 0.27) (p < .01), whose area under the ROC curve was 0.837 with a cut-off value of 0.745 (67.92% sensitivity, 96.94% specificity). ALL patients with higher miR-16-2-3p expression had higher survival rates than those with lower miR-16-2-3p expression. Low miR-16-2-3p expression predicted poor prognosis of ALL patients. After adjusting LDH and lymphomyelocyte proportion (p = 0.003, HR = 0.003, 95%CI = 0.000-0.145), miR-16-2-3p was recognized as an independent prognostic factor for ALL patient survival. Briefly, low serum miR-16-2-3p expression in ALL children could aid ALL diagnosis and predict poor prognosis.
Collapse
Affiliation(s)
- Xinran Chu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Dong Wu
- Department of Pediatric, Qiyuan People's Hospital, Zibo, China
| | - Chenyue Zhang
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Shaoyan Hu
- Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Bu N, Gao Y, Zhao Y, Xia H, Shi X, Deng Y, Wang S, Li Y, Lv J, Liu Q, Wang S. LncRNA H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by neodymium oxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114173. [PMID: 36326553 DOI: 10.1016/j.ecoenv.2022.114173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/02/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The occupational and environmental health safety of rare earths has attracted considerable attention. In China, the rare earth neodymium oxide (Nd2O3) is extensively refined and utilized. However, the mechanisms of Nd2O3-induced lung injury are elusive. In the present study, we found that exposure of mice to Nd2O3 caused an inflammatory reaction and fibrosis in lung tissues, which was in relation to the Nd2O3-induced higher levels of the lncRNA H19 (H19), tumor necrosis factor receptor 1 (TNFRSF1A), p-p65, and p-IKKβ and lower levels of miR-29a-3p. Further, in mouse monocyte macrophage leukemia cells (RAW264.7), Nd2O3 induced an inflammatory reaction, increases of H19 and TNFRSF1A levels, decreases of miR-29a-3p levels, and activation of the nuclear factor (NF)-κB signaling pathway. Further, we established that miR-29a-3p regulates TNFRSF1A expression. Up-regulation of miR-29a-3p and down-regulation of H19 blocked the Nd2O3-induced secretion of TNF-α, MIP-1α, and IL-6; the increases of TNFRSF1A levels; and activation of the NF-κB signaling pathway in RAW264.7 cells. Further, in Nd2O3-treated RAW26.4 cells, H19 inhibited the expression of miR-29a-3p, which targets TNFRSF1A, and activated the NF-κB signaling pathway to enhance the expression of TNF-α, MIP-1α, and IL-6. Moreover, for mice, up-regulation of miR-29a-3p reversed lung tissue inflammation, pulmonary fibrosis, and activation of the NF-κB signaling pathway induced by Nd2O3. In sum, the present investigation shows that H19 via miR-29a-3p is involved in lung inflammation and pulmonary fibrosis induced by Nd2O3, which is a mechanism for the Nd2O3-induced lung inflammatory response and pulmonary fibrosis. This information is useful for development of a biomarker of Nd2O3-induced lung injury.
Collapse
Affiliation(s)
- Ning Bu
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yanrong Gao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yuhang Zhao
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China
| | - Xuemin Shi
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yang Deng
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Shurui Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Yibo Li
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Jialing Lv
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, PR China.
| | - Suhua Wang
- School of Public Health, Baotou Medical College, Baotou 014030, Inner Mongolia, PR China.
| |
Collapse
|