1
|
Piña JO, Raju R, Roth DM, Winchester EW, Chattaraj P, Kidwai F, Faucz FR, Iben J, Mitra A, Campbell K, Fridell G, Esnault C, Cotney JL, Dale RK, D'Souza RN. Multimodal spatiotemporal transcriptomic resolution of embryonic palate osteogenesis. Nat Commun 2023; 14:5687. [PMID: 37709732 PMCID: PMC10502152 DOI: 10.1038/s41467-023-41349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
The terminal differentiation of osteoblasts and subsequent formation of bone marks an important phase in palate development that leads to the separation of the oral and nasal cavities. While the morphogenetic events preceding palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms driving the formation of this bony union of the fusing palate. Through bulk, single-nucleus, and spatially resolved RNA-sequencing analyses of the developing secondary palate, we identify a shift in transcriptional programming between embryonic days 14.5 and 15.5 pinpointing the onset of osteogenesis. We define spatially restricted expression patterns of key osteogenic marker genes that are differentially expressed between these developmental timepoints. Finally, we identify genes in the palate highly expressed by palate nasal epithelial cells, also enriched within palatal osteogenic mesenchymal cells. This investigation provides a relevant framework to advance palate-specific diagnostic and therapeutic biomarker discovery.
Collapse
Affiliation(s)
- Jeremie Oliver Piña
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Resmi Raju
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniela M Roth
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | | | - Parna Chattaraj
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fahad Kidwai
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fabio R Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gus Fridell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Justin L Cotney
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rena N D'Souza
- Section on Craniofacial Genetic Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
2
|
Piña JO, Raju R, Roth DM, Chattaraj P, Kidwai F, Faucz FR, Iben J, Mitra A, Campbell K, Fridell G, Esnault C, Dale RK, D’Souza RN. Integrated spatiotemporal transcriptomic resolution of embryonic palate osteogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534875. [PMID: 37333290 PMCID: PMC10274879 DOI: 10.1101/2023.03.30.534875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The differentiation of osteoblasts and the subsequent formation of bone marks an important terminal phase in palate formation that leads to the separation of the oral and nasal cavities. While the developmental events that precede palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms that lead to the bony union of fusing palatal shelves. Herein, the timeline of osteogenic transcriptional programming is unveiled in the embryonic palate by way of integrated bulk, single-cell, and spatially resolved RNA-seq analyses. We define spatially restricted expression patterns of key marker genes, both regulatory and structural, that are differentially expressed during palatal fusion, including the identification of several novel genes ( Deup1, Dynlrb2, Lrrc23 ) spatially restricted in expression to the palate, providing a relevant framework for future studies that identify new candidate genes for cleft palate anomalies in humans as well as the timing of mammalian embryonic palatal osteogenesis.
Collapse
Affiliation(s)
- Jeremie Oliver Piña
- Section on Molecules & Therapies for Craniofacial & Dental Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Resmi Raju
- Section on Molecules & Therapies for Craniofacial & Dental Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Daniela M. Roth
- Section on Molecules & Therapies for Craniofacial & Dental Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
- School of Dentistry, University of Alberta, Edmonton, AB, CA
| | - Parna Chattaraj
- Section on Molecules & Therapies for Craniofacial & Dental Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fahad Kidwai
- Section on Molecules & Therapies for Craniofacial & Dental Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Fabio R. Faucz
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Apratim Mitra
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kiersten Campbell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Gus Fridell
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Caroline Esnault
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Ryan K. Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rena N. D’Souza
- Section on Molecules & Therapies for Craniofacial & Dental Disorders, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
3
|
Schweikl C, Maier-Wohlfart S, Schneider H, Park J. Ectodysplasin A1 Deficiency Leads to Osteopetrosis-like Changes in Bones of the Skull Associated with Diminished Osteoclastic Activity. Int J Mol Sci 2022; 23:12189. [PMID: 36293046 PMCID: PMC9603288 DOI: 10.3390/ijms232012189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 08/30/2023] Open
Abstract
Pathogenic variants of the gene Eda cause X-linked hypohidrotic ectodermal dysplasia (XLHED), which is characterized by structural abnormalities or lack of ectodermal appendages. Signs of dysplasia are not restricted to derivatives of the ectodermal layer, but mesodermal abnormalities, such as craniofacial dysmorphism, are also frequently observed, suggesting close reciprocal interactions between the ectoderm and mesoderm; however, a causal link has remained unsubstantiated. We investigated the functional impact of defective ectodysplasin A1 (Eda1) signaling on postnatal bone homeostasis in Eda1-deficient Tabby mice. Interestingly, Eda1 was detected in wild-type mouse calvariae throughout postnatal lifetime. In calvariae, bone-lining Osterix (Osx)+ osteoblasts stained positive for Eda1, and osteoclasts were revealed as Eda receptor (Edar)-positive. Moreover, adult Eda1-deficient calvarial bone showed osteopetrosis-like changes with significantly diminished marrow space, which was maintained during adulthood. Concomitantly with osteopetrosis-like changes, Tabby calvarial bone and Tabby bone marrow-derived osteoclasts had far less osteoclastic activity-associated co-enzymes including cathepsin K, Mmp9, Trap, and Tcirg1 (V-type proton ATPase a3 subunit) compared with wild-type calvariae in vivo or osteoclasts in vitro, indicating that Eda1 deficiency may affect the activity of osteoclasts. Finally, we confirmed that nuclear Nfatc1-positive osteoclasts were strongly diminished during mature osteoclastic differentiation under M-CSF and RANKL in the Tabby model, while Fc-EDA treatment of Tabby-derived osteoclasts significantly increased nuclear translocation of Nfatc1. Furthermore, we identified enhanced Nfatc1 and NF-κB transcriptional activity following Fc-EDA treatment in vitro using luciferase assays. Overall, the results indicate that diminished expressions of osteoclastic activity-associated co-enzymes may lead to disturbed bone homeostasis in Tabby calvariae postnatally.
Collapse
Affiliation(s)
- Christine Schweikl
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sigrun Maier-Wohlfart
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Holm Schneider
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jung Park
- Department of Pediatrics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- Center for Ectodermal Dysplasias, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|