1
|
Mu D, Shao Y, He J, Zhu L, Qiu D, Wilson IW, Zhang Y, Pan L, Zhou Y, Lu Y, Tang Q. Evaluation of Reference Genes for Normalizing RT-qPCR and Analysis of the Expression Patterns of WRKY1 Transcription Factor and Rhynchophylline Biosynthesis-Related Genes in Uncaria rhynchophylla. Int J Mol Sci 2023; 24:16330. [PMID: 38003520 PMCID: PMC10671239 DOI: 10.3390/ijms242216330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Uncaria rhynchophylla (Miq.) Miq. ex Havil, a traditional medicinal herb, is enriched with several pharmacologically active terpenoid indole alkaloids (TIAs). At present, no method has been reported that can comprehensively select and evaluate the appropriate reference genes for gene expression analysis, especially the transcription factors and key enzyme genes involved in the biosynthesis pathway of TIAs in U. rhynchophylla. Reverse transcription quantitative PCR (RT-qPCR) is currently the most common method for detecting gene expression levels due to its high sensitivity, specificity, reproducibility, and ease of use. However, this methodology is dependent on selecting an optimal reference gene to accurately normalize the RT-qPCR results. Ten candidate reference genes, which are homologues of genes used in other plant species and are common reference genes, were used to evaluate the expression stability under three stress-related experimental treatments (methyl jasmonate, ethylene, and low temperature) using multiple stability analysis methodologies. The results showed that, among the candidate reference genes, S-adenosylmethionine decarboxylase (SAM) exhibited a higher expression stability under the experimental conditions tested. Using SAM as a reference gene, the expression profiles of 14 genes for key TIA enzymes and a WRKY1 transcription factor were examined under three experimental stress treatments that affect the accumulation of TIAs in U. rhynchophylla. The expression pattern of WRKY1 was similar to that of tryptophan decarboxylase (TDC) under ETH treatment. This research is the first to report the stability of reference genes in U. rhynchophylla and provides an important foundation for future gene expression analyses in U. rhynchophylla. The RT-qPCR results indicate that the expression of WRKY1 is similar to that of TDC under ETH treatment. It may coordinate the expression of TDC, providing a possible method to enhance alkaloid production in the future through synthetic biology.
Collapse
Affiliation(s)
- Detian Mu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Yingying Shao
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jialong He
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Lina Zhu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Iain W Wilson
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Agriculture and Food, Canberra, ACT 2601, Australia
| | - Yao Zhang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Limei Pan
- Key Laboratory of Guangxi for High-Quality Formation and Utilization of Dai-di Herbs, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China
| | - Yu Zhou
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ying Lu
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Qi Tang
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Yang W, Feng L, Luo J, Zhang H, Jiang F, He Y, Li X, Du J, Owusu Adjei M, Luan A, Ma J. Genome-Wide Identification and Characterization of R2R3-MYB Provide Insight into Anthocyanin Biosynthesis Regulation Mechanism of Ananas comosus var. bracteatus. Int J Mol Sci 2023; 24:3133. [PMID: 36834551 PMCID: PMC9964748 DOI: 10.3390/ijms24043133] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
The R2R3-MYB proteins comprise the largest class of MYB transcription factors, which play an essential role in regulating anthocyanin synthesis in various plant species. Ananas comosus var. bracteatus is an important colorful anthocyanins-rich garden plant. The spatio-temporal accumulation of anthocyanins in chimeric leaves, bracts, flowers, and peels makes it an important plant with a long ornamental period and highly improves its commercial value. We conducted a comprehensive bioinformatic analysis of the R2R3-MYB gene family based on genome data from A. comosus var. bracteatus. Phylogenetic analysis, gene structure and motif analysis, gene duplication, collinearity, and promoter analysis were used to analyze the characteristics of this gene family. In this work, a total of 99 R2R3-MYB genes were identified and classified into 33 subfamilies according to phylogenetic analysis, and most of them were localized in the nucleus. We found these genes were mapped to 25 chromosomes. Gene structure and protein motifs were conserved among AbR2R3-MYB genes, especially within the same subfamily. Collinearity analysis revealed four pairs of tandem duplicated genes and 32 segmental duplicates in AbR2R3-MYB genes, indicating that segmental duplication contributed to the amplification of the AbR2R3-MYB gene family. A total of 273 ABRE responsiveness, 66 TCA elements, 97 CGTCA motifs, and TGACG motifs were the main cis elements in the promoter region under response to ABA, SA, and MEJA. These results revealed the potential function of AbR2R3-MYB genes in response to hormone stress. Ten R2R3-MYBs were found to have high homology to MYB proteins reported to be involved in anthocyanin biosynthesis from other plants. RT-qPCR results revealed the 10 AbR2R3-MYB genes showed tissue-specific expression patterns, six of them expressed the highest in the flower, two genes in the bract, and two genes in the leaf. These results suggested that these genes may be the candidates that regulate anthocyanin biosynthesis of A. comosus var. bracteatus in the flower, leaf, and bract, respectively. In addition, the expressions of these 10 AbR2R3-MYB genes were differentially induced by ABA, MEJA, and SA, implying that these genes may play crucial roles in hormone-induced anthocyanin biosynthesis. Our study provided a comprehensive and systematic analysis of AbR2R3-MYB genes and identified the AbR2R3-MYB genes regulating the spatial-temporal anthocyanin biosynthesis in A. comosus var. bracteatus, which would be valuable for further study on the anthocyanin regulation mechanism of A. comosus var. bracteatus.
Collapse
Affiliation(s)
- Wei Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Lijun Feng
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Jiaheng Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Huiling Zhang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Fuxing Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Yehua He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Juan Du
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Mark Owusu Adjei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| | - Aiping Luan
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 625014, China
| |
Collapse
|
3
|
Zhou Y, Meng F, Han K, Zhang K, Gao J, Chen F. Screening and validating of endogenous reference genes in Chlorella sp. TLD 6B under abiotic stress. Sci Rep 2023; 13:1555. [PMID: 36707665 PMCID: PMC9883494 DOI: 10.1038/s41598-023-28311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Chlorella sp. TLD 6B, a microalgae growing in the Taklamakan Desert, Xinjiang of China, is a good model material for studying the physiological and environmental adaptation mechanisms of plants in their arid habitats, as its adaptation to the harsh desert environment has led to its strong resistance. However, when using real-time quantitative polymerase chain reaction (RT-qPCR) to analyze the gene expression of this algae under abiotic stress, it is essential to find the suitable endogenous reference genes so to obtain reliable results. This study assessed the expression stability of 9 endogenous reference genes of Chlorella sp. TLD 6B under four abiotic stresses (drought, salt, cold and heat). These genes were selected based on the analysis results calculated by the three algorithmic procedures of geNorm, NormFinder, and BestKeeper, which were ranked by refinder. Our research showed that 18S and GTP under drought stress, 18S and IDH under salt stress, CYP and 18S under cold stress, GTP and IDH under heat stress were the most stable endogenous reference genes. Moreover, UBC and 18S were the most suitable endogenous reference gene combinations for all samples. In contrast, GAPDH and α-TUB were the two least stable endogenous reference genes in all experimental samples. Additionally, the selected genes have been verified to be durable and reliable by detecting POD and PXG3 genes using above endogenous reference genes. The identification of reliable endogenous reference genes guarantees more accurate RT-qPCR quantification for Chlorella sp. TLD 6B, facilitating functional genomics studies of deserts Chlorella as well as the mining of resistance genes.
Collapse
Affiliation(s)
- Yongshun Zhou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Fanze Meng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Kai Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Kaiyue Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China
| | - Jianfeng Gao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| | - Fulong Chen
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, 832000, People's Republic of China.
| |
Collapse
|
4
|
Cheng SS, Ku YS, Cheung MY, Lam HM. Identification of stably expressed reference genes for expression studies in Arabidopsis thaliana using mass spectrometry-based label-free quantification. FRONTIERS IN PLANT SCIENCE 2022; 13:1001920. [PMID: 36247637 PMCID: PMC9557097 DOI: 10.3389/fpls.2022.1001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Arabidopsis thaliana has been used regularly as a model plant in gene expression studies on transcriptional reprogramming upon pathogen infection, such as that by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), or when subjected to stress hormone treatments including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been extensively employed to quantitate these gene expression changes. However, the accuracy of the quantitation is largely dependent on the stability of the expressions of reference genes used for normalization. Recently, RNA sequencing (RNA-seq) has been widely used to mine stably expressed genes for use as references in RT-qPCR. However, the amplification step in RNA-seq creates an intrinsic bias against those genes with relatively low expression levels, and therefore does not provide an accurate quantification of all expressed genes. In this study, we employed mass spectrometry-based label-free quantification (LFQ) in proteomic analyses to identify those proteins with abundances unaffected by Pst DC3000 infection. We verified, using RT-qPCR, that the levels of their corresponding mRNAs were also unaffected by Pst DC3000 infection. Compared to commonly used reference genes for expression studies in A. thaliana upon Pst DC3000 infection, the candidate reference genes reported in this study generally have a higher expression stability. In addition, using RT-qPCR, we verified that the mRNAs of the candidate reference genes were stably expressed upon stress hormone treatments including JA, SA, and ABA. Results indicated that the candidate genes identified here had stable expressions upon these stresses and are suitable to be used as reference genes for RT-qPCR. Among the 18 candidate reference genes reported in this study, many of them had greater expression stability than the commonly used reference genes, such as ACT7, in previous studies. Here, besides proposing more appropriate reference genes for Arabidopsis expression studies, we also demonstrated the capacity of mass spectrometry-based LFQ to quantify protein abundance and the possibility to extend protein expression studies to the transcript level.
Collapse
|
5
|
Orrego A, Gavilán MC, Arévalos A, Ortíz B, Gaete Humada B, Pineda-Fretez A, Romero-Rodríguez MC, Flores Giubi ME, Kohli MM, Iehisa JCM. Identification of reference genes and their validation for gene expression analysis in phytopathogenic fungus Macrophomina phaseolina. PLoS One 2022; 17:e0272603. [PMID: 35930568 PMCID: PMC9355225 DOI: 10.1371/journal.pone.0272603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 07/23/2022] [Indexed: 11/19/2022] Open
Abstract
Macrophomina phaseolina is a soil-borne pathogenic fungus that infects a wide range of crop species and causes severe yield losses. Although the genome of the fungus has been sequenced, the molecular basis of its virulence has not been determined. Identification of up-regulated genes during fungal infection is important to understand the mechanism involved in its virulence. To ensure reliable quantification, expression of target genes needs to be normalized on the basis of certain reference genes. However, in the case of M. phaseolina, reference genes or their expression analysis have not been reported in the literature. Therefore, the objective of this study was to evaluate 12 candidate reference genes for the expression analysis of M. phaseolina genes by applying three different fungal growth conditions: a) during root and stem infection of soybean, b) in culture media with and without soybean leaf infusion and c) by inoculating a cut-stem. Based on BestKeeper, geNorm and NormFinder algorithms, CYP1 was identified as the best recommended reference gene followed by EF1β for expression analysis of fungal gene during soybean root infection. Besides Mp08158, CYP1 gene was found suitable when M. phaseolina was grown in potato-dextrose broth with leaf infusion. In the case of cut-stem inoculation, Mp08158 and Mp11185 genes were found to be most stable. To validate the selected reference genes, expression analysis of two cutinase genes was performed. In general, the expression patterns were similar when the target genes were normalized against most or least stable gene. However, in some cases different expression pattern can be obtained when least stable gene is used for normalization. We believe that the reference genes identified and validated in this study will be useful for gene expression analysis during host infection with M. phaseolina.
Collapse
Affiliation(s)
- Adriana Orrego
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cecilia Gavilán
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Aníbal Arévalos
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Ortíz
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Belén Gaete Humada
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Amiliana Pineda-Fretez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Cristina Romero-Rodríguez
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - María Eugenia Flores Giubi
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Man Mohan Kohli
- Cámara Paraguaya de Exportadores y Comercializadores de Cereales y Oleaginosas (CAPECO), Asunción, Paraguay
| | - Julio C. M. Iehisa
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
- * E-mail:
| |
Collapse
|
6
|
Zhang L, Cai Y, Zhang M, Du G, Wang J. Selection and Evaluation of Candidate Reference Genes for Quantitative Real-Time PCR in Aboveground Tissues and Drought Conditions in Rhododendron Delavayi. Front Genet 2022; 13:876482. [PMID: 35495151 PMCID: PMC9046656 DOI: 10.3389/fgene.2022.876482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/17/2022] [Indexed: 11/18/2022] Open
Abstract
There has been no systematic identification and screening of candidate reference genes for normalization of quantitative real-time PCR (qRT-PCR) results in Rhododendron delavayi to date. Therefore, the present study used GAPDH, Act, EF1, Tub-, Tub-5, UEC1, TATA, TATA-2, UEP, TIP41, and Ubiquitin to predict their stabilities on different aboveground tissues (matured leaves (ML), stem tips (STM), and flower buds (FB)) at different developmental stages (young and adult plants) using five statistical algorithms: Delta Ct method, BestKeeper, geNorm, Normfinder, and RefFinder. The findings were confirmed using ML obtained from plants that had been stressed by drought. By using RefFinder with ML samples collected under drought conditions, it was determined that the top five most stable reference genes were GAPDH > UEC1 > Actin > Tubulin- > Tubulin—5, whereas the least stable reference gene was Ubiquitin. In addition, under control conditions, UEC1, UEC2, Actin, and GAPDH were selected as the highest stable potential reference genes at the juvenile stage of R. delavayi with ML and STM. When ML and STM were combined with drought-stressed samples, TIP41, GAPDH, or their combination proved to be the most effective qRT-PCR primers. The findings will aid in the improvement of the precision and reliability of qRT-PCR data and laying the groundwork for future gene functional studies in R. delavayi.
Collapse
Affiliation(s)
- Lu Zhang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Yanfei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
| | - Mingchao Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming, China
- *Correspondence: Guanghui Du, ; Jihua Wang,
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, China
- National Engineering Research Center for Ornamental Horticulture, Kunming, China
- *Correspondence: Guanghui Du, ; Jihua Wang,
| |
Collapse
|