1
|
Wang J, Zeng X, Xue W, Jia Q, Jiang Q, Huo C, Jiao X, Zhang J, Wang Y, Tian L, Zhu Z. Transcriptomic profiling of lung fibroblasts in silicosis: Regulatory roles of Nrf2 agonists in a mouse model. Int Immunopharmacol 2024; 143:113273. [PMID: 39362014 DOI: 10.1016/j.intimp.2024.113273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Silicosis is an occupational disease caused by long-term inhalation of free silica, resulting in a significant global health burden. Its pathogenesis remains unclear, and there is no effective treatment. Proliferative and activated myofibroblasts play a key role in the development of silicosis. Traditional studies have focused on fibroblast proliferation and collagen secretion, neglecting their functional heterogeneity. With the advancement of omics research, more pathogenic fibroblast subgroups and their functions have been identified. In this study, we applied transcriptomics to analyze gene changes in primary lung fibroblasts during silicosis development using a mouse model. Our results indicate that DEGs are enriched in collagen secretion, ECM synthesis, leukocyte migration, and chemotaxis functions. Altered core genes are associated with immune cell recruitment and cell migration. Nrf2 agonists, known for anti-inflammatory and antioxidant properties, have shown potential therapeutic effects in fibrotic diseases. However, their effects on fibroblasts in silicosis are not fully understood. We used four common Nrf2 agonists to study gene expression changes in lung fibroblasts at the transcriptome level, combined with histopathological and biochemical methods, to investigate their effects on silicosis in mice. Results show that Nrf2 agonists can exert anti-silicosis fibrosis functions by downregulating genes like Fos and Egr1, involved in cell differentiation, proliferation, and inflammation. In conclusion, this study suggests that inflammation-related co-functions of fibroblasts may be a potential mechanism in silicosis pathogenesis. Targeting Nrf2 may be a promising strategy to alleviate oxidative stress and inflammation in silicosis.
Collapse
Affiliation(s)
- Jiaxin Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xinying Zeng
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenming Xue
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jia
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Qiyue Jiang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xukun Jiao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jiaxin Zhang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
2
|
Xiao R, Han J, Deng Y, Zhang L, Qian Y, Tian N, Yang Z, Zhang L. AGTR1: a potential biomarker associated with the occurrence and prognosis of lung adenocarcinoma. Front Oncol 2024; 14:1441235. [PMID: 39450258 PMCID: PMC11499140 DOI: 10.3389/fonc.2024.1441235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Introduction Lung adenocarcinoma, a disease with complex pathogenesis, high mortality and poor prognosis, is one of the subtypes of lung cancer. Hence, it is very crucial to find novel biomarkers as diagnostic and therapeutic targets for LUAD. Methods GSE10072 was used for DEGs and WGCNA, and the intersection genes were subjected to enrichment analysis through Metascape and GSEA. Key genes were screened by three machine learning methods. Further, the reliability of key genes was identified by ROC, COX regression analysis and qRT-PCR. CIBERSORT and Spearman analysis were used for understanding the relationships of LUAD, immunity and key genes. In addition, ceRNA networks and potential drugs of key genes were constructed and predicted. Results After overlapping 631 DEGs and key module genes, 623 intersection genes were obtained. Subsequently, DUOX1, CD36, AGTR1, FHL5 and SSR4 were further selected using three machine learning methods. Reliability analysis demonstrated that AGTR1 possesses important predictive value for the occurrence and prognosis of LUAD. The enrichment analysis showed that AGTR1 was significantly enriched in the GPCR-related pathways. Immune infiltration analysis showed that the development of LUAD was related to the changes of immune cells such as M2 macrophages and neutrophils, which were regulated by AGTR1. Further, AGTR1 is also involved in regulating immune chemokines, checkpoints and immune regulatory factors such as PECAM1, ADARB1, SPP1 and ENO1, all of them playing important roles in immune cell regulation, tumor cell proliferation and migration. Further, the drug-gene interaction network screened out 13 potential drugs such as Benazepril, Valsartan, Eprosartan, and so on. Discussion AGTR1 is a potential biomarker for the occurrence and progression of LUAD, closely related to tumor immunity, proliferation and migration. It can serve as a new target for the diagnosis and treatment of LUAD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lin Zhang
- College of Life Science/Institute of Molecular Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Yang L, Fang C, Zhang R, Zhou S. Prognostic value of oxidative stress-related genes in colorectal cancer and its correlation with tumor immunity. BMC Genomics 2024; 25:8. [PMID: 38166604 PMCID: PMC10759670 DOI: 10.1186/s12864-023-09879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative stress (OS) plays an essential role in chronic diseases such as colorectal cancer (CRC). In this study, we aimed to explore the relation between oxidative stress-related genes and CRC prognosis and their involvement in the immune microenvironment. Totally 101 OS-related genes were selected from the MsigDB database. Then, univariate Cox regression was used to explore the prognostic value of the selected genes correlated with the CRC patient survival in the TCGA database. A total of 9 prognostic OS-related genes in CRC were identified. Based on consensus clustering, CRC patients were then categorized into two molecular subtypes. A prognostic risk model containing 8 genes was established using Lasso regression, and CRC patients were divided into high or low-risk groups based on the median risk scores. The predictive value of the 8 genes in CRC prognosis was validated using ROC curves, which indicate that CTNNB1, STK25, RNF112, SFPQ, MMP3, and NOL3 were promising prognostic biomarkers in CRC. Furthermore, the immune cell infiltration levels in different risk groups or CRC subtypes were analyzed. We found that the high-risk or C1 subtype had immunosuppressive microenvironment, which might explain the unfavorable prognosis in the two groups of CRC patients. Additionally, functional experiments were conducted to investigate the effects of OS-related genes on CRC cell proliferation, stemness, and apoptosis. We found that CTNNB1, HSPB1, MMP3, and NOL3 were upregulated in CRC tissues and cells. Knockdown of CTNNB1, HSPB1, MMP3, and NOL3 significantly suppressed CRC cell proliferation, stemness and facilitated CRC cell apoptosis. In conclusion, we established prognostic CRC subtypes and an eight-gene risk model, which may provide novel prognostic indicators and benefit the design of individualized therapeutic strategies for CRC patients.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province (Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University), No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
4
|
Wang X, Wu S, Sun L, Jin P, Zhang J, Liu W, Zhan Z, Wang Z, Liu X, He L. Pan-cancer analysis revealing that PTPN2 is an indicator of risk stratification for acute myeloid leukemia. Sci Rep 2023; 13:18372. [PMID: 37884566 PMCID: PMC10603079 DOI: 10.1038/s41598-023-44892-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
The non-receptor protein tyrosine phosphatases gene family (PTPNs) is involved in the tumorigenesis and development of many cancers, but the role of PTPNs in acute myeloid leukemia (AML) remains unclear. After a comprehensive evaluation on the expression patterns and immunological effects of PTPNs using a pan-cancer analysis based on RNA sequencing data obtained from The Cancer Genome Atlas, the most valuable gene PTPN2 was discovered. Further investigation of the expression patterns of PTPN2 in different tissues and cells showed a robust correlation with AML. PTPN2 was then systematically correlated with immunological signatures in the AML tumor microenvironment and its differential expression was verified using clinical samples. In addition, a prediction model, being validated and compared with other models, was developed in our research. The systematic analysis of PTPN family reveals that the effect of PTPNs on cancer may be correlated to mediating cell cycle-related pathways. It was then found that PTPN2 was highly expressed in hematologic diseases and bone marrow tissues, and its differential expression in AML patients and normal humans was verified by clinical samples. Based on its correlation with immune infiltrates, immunomodulators, and immune checkpoint, PTPN2 was found to be a reliable biomarker in the immunotherapy cohort and a prognostic predictor of AML. And PTPN2'riskscore can accurately predict the prognosis and response of cancer immunotherapy. These findings revealed the correlation between PTPNs and immunophenotype, which may be related to cell cycle. PTPN2 was differentially expressed between clinical AML patients and normal people. It is a diagnostic biomarker and potentially therapeutic target, providing targeted guidance for clinical treatment.
Collapse
Affiliation(s)
- Xuanyu Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Sanyun Wu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Peipei Jin
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jianmin Zhang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wen Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhuo Zhan
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zisong Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, Hubei Province, China
| | - Xiaoping Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| | - Li He
- Department of Urology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Dancik GM, Varisli L, Vlahopoulos SA. The Molecular Context of Oxidant Stress Response in Cancer Establishes ALDH1A1 as a Critical Target: What This Means for Acute Myeloid Leukemia. Int J Mol Sci 2023; 24:ijms24119372. [PMID: 37298333 DOI: 10.3390/ijms24119372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The protein family of aldehyde dehydrogenases (ALDH) encompasses nineteen members. The ALDH1 subfamily consists of enzymes with similar activity, having the capacity to neutralize lipid peroxidation products and to generate retinoic acid; however, only ALDH1A1 emerges as a significant risk factor in acute myeloid leukemia. Not only is the gene ALDH1A1 on average significantly overexpressed in the poor prognosis group at the RNA level, but its protein product, ALDH1A1 protects acute myeloid leukemia cells from lipid peroxidation byproducts. This capacity to protect cells can be ascribed to the stability of the enzyme under conditions of oxidant stress. The capacity to protect cells is evident both in vitro, as well as in mouse xenografts of those cells, shielding cells effectively from a number of potent antineoplastic agents. However, the role of ALDH1A1 in acute myeloid leukemia has been unclear in the past due to evidence that normal cells often have higher aldehyde dehydrogenase activity than leukemic cells. This being true, ALDH1A1 RNA expression is significantly associated with poor prognosis. It is hence imperative that ALDH1A1 is methodically targeted, particularly for the acute myeloid leukemia patients of the poor prognosis risk group that overexpress ALDH1A1 RNA.
Collapse
Affiliation(s)
- Garrett M Dancik
- Department of Computer Science, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros A Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
6
|
Chen R, Wei JM. Integrated analysis identifies oxidative stress-related lncRNAs associated with progression and prognosis in colorectal cancer. BMC Bioinformatics 2023; 24:76. [PMID: 36869292 PMCID: PMC9985255 DOI: 10.1186/s12859-023-05203-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common cancers in the world. Oxidative stress reactions have been reportedly associated with oncogenesis and tumor progression. By analyzing mRNA expression data and clinical information from The Cancer Genome Atlas (TCGA), we aimed to construct an oxidative stress-related long noncoding RNA (lncRNA) risk model and identify oxidative stress-related biomarkers to improve the prognosis and treatment of CRC. RESULTS Differentially expressed oxidative stress-related genes (DEOSGs) and oxidative stress-related lncRNAs were identified by using bioinformatics tools. An oxidative stress-related lncRNA risk model was constructed based on 9 lncRNAs (AC034213.1, AC008124.1, LINC01836, USP30-AS1, AP003555.1, AC083906.3, AC008494.3, AC009549.1, and AP006621.3) by least absolute shrinkage and selection operator (LASSO) analysis. The patients were then divided into high- and low-risk groups based on the median risk score. The high-risk group had a significantly worse overall survival (OS) (p < 0.001). Receiver operating characteristic (ROC) and calibration curves displayed the favorable predictive performance of the risk model. The nomogram successfully quantified the contribution of each metric to survival, and the concordance index and calibration plots demonstrated its excellent predictive capacity. Notably, different risk subgroups showed significant differences in terms of their metabolic activity, mutation landscape, immune microenvironment and drug sensitivity. Specifically, differences in the immune microenvironment implied that CRC patients in certain subgroups might be more responsive to immune checkpoint inhibitors. CONCLUSIONS Oxidative stress-related lncRNAs can predict the prognosis of CRC patients, which provides new insight for future immunotherapies based on potential oxidative stress targets.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun-Min Wei
- Department of Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
7
|
Cao S, Chen C, Gu D, Wang Z, Xu G. Establishment and external verification of an oxidative stress-related gene signature to predict clinical outcomes and therapeutic responses of colorectal cancer. Front Pharmacol 2023; 13:991881. [PMID: 36860211 PMCID: PMC9968941 DOI: 10.3389/fphar.2022.991881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/11/2022] [Indexed: 02/15/2023] Open
Abstract
Objective: Accumulated evidence highlights the biological significance of oxidative stress in tumorigenicity and progression of colorectal cancer (CRC). Our study aimed to establish a reliable oxidative stress-related signature to predict patients' clinical outcomes and therapeutic responses. Methods: Transcriptome profiles and clinical features of CRC patients were retrospectively analyzed from public datasets. LASSO analysis was used to construct an oxidative stress-related signature to predict overall survival, disease-free survival, disease-specific survival, and progression-free survival. Additionally, antitumor immunity, drug sensitivity, signaling pathways, and molecular subtypes were analyzed between different risk subsets through TIP, CIBERSORT, oncoPredict, etc. approaches. The genes in the signature were experimentally verified in the human colorectal mucosal cell line (FHC) along with CRC cell lines (SW-480 and HCT-116) through RT-qPCR or Western blot. Results: An oxidative stress-related signature was established, composed of ACOX1, CPT2, NAT2, NRG1, PPARGC1A, CDKN2A, CRYAB, NGFR, and UCN. The signature displayed an excellent capacity for survival prediction and was linked to worse clinicopathological features. Moreover, the signature correlated with antitumor immunity, drug sensitivity, and CRC-related pathways. Among molecular subtypes, the CSC subtype had the highest risk score. Experiments demonstrated that CDKN2A and UCN were up-regulated and ACOX1, CPT2, NAT2, NRG1, PPARGC1A, CRYAB, and NGFR were down-regulated in CRC than normal cells. In H2O2-induced CRC cells, their expression was notably altered. Conclusion: Altogether, our findings constructed an oxidative stress-related signature that can predict survival outcomes and therapeutic response in CRC patients, thus potentially assisting prognosis prediction and adjuvant therapy decisions.
Collapse
Affiliation(s)
- Sha Cao
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Cheng Chen
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Dezhi Gu
- Department of Gastrointestinal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Zhengdong Wang
- Department of Gastrointestinal Surgery, The First People’s Hospital of Lianyungang, Lianyungang, China
| | - Guanghui Xu
- Department of Oncology, The First People’s Hospital of Lianyungang, Lianyungang, China,*Correspondence: Guanghui Xu,
| |
Collapse
|
8
|
Combined scRNAseq and Bulk RNAseq Analysis to Reveal the Dual Roles of Oxidative Stress-Related Genes in Acute Myeloid Leukemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:5343746. [PMID: 36811020 PMCID: PMC9938912 DOI: 10.1155/2023/5343746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 02/11/2023]
Abstract
Background Oxidative stress (OS) can either lead to leukemogenesis or induce tumor cell death by inflammation and immune response accompanying the process of OS through chemotherapy. However, previous studies mainly focus on the level of OS state and the salient factors leading to tumorigenesis and progression of acute myeloid leukemia (AML), and nothing has been done to distinguish the OS-related genes with different functions. Method First, we downloaded single-cell RNA sequencing (scRNAseq) and bulk RNA sequencing (RNAseq) data from public databases and evaluated the oxidative stress functions between leukemia cells and normal cells by the ssGSEA algorithm. Then, we used machine learning methods to screen out OS gene set A related to the occurrence and prognosis of AML and OS gene set B related to treatment in leukemia stem cells (LSCs) like population (HSC-like). Furthermore, we screened out the hub genes in the above two gene sets and used them to identify molecular subclasses and construct a model for predicting therapy response. Results Leukemia cells have different OS functions compared to normal cells and significant OS functional changes before and after chemotherapy. Two different clusters in gene set A were identified, which showed different biological properties and clinical relevance. The sensitive model for predicting therapy response based on gene set B demonstrated predictive accuracy by ROC and internal validation. Conclusion We combined scRNAseq and bulk RNAseq data to construct two different transcriptomic profiles to reveal the different roles of OS-related genes involved in AML oncogenesis and chemotherapy resistance, which might provide important insights into the mechanism of OS-related genes in the pathogenesis and drug resistance of AML.
Collapse
|