1
|
Tan J, Yang B, Qiu L, He R, Wu Z, Ye M, Zan L, Yang W. Bta-miR-200a Regulates Milk Fat Biosynthesis by Targeting IRS2 to Inhibit the PI3K/Akt Signal Pathway in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16449-16460. [PMID: 38996051 DOI: 10.1021/acs.jafc.4c02508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Milk fat synthesis has garnered significant attention due to its influence on the quality of milk. Recently, an increasing amount of proofs have elucidated that microRNAs (miRNAs) are important post-transcriptional factor involved in regulating gene expression and play a significant role in milk fat synthesis. MiR-200a was differentially expressed in the mammary gland tissue of dairy cows during different lactation periods, which indicated that miR-200a was a candidate miRNA involved in regulating milk fat synthesis. In our research, we investigated the potential function of miR-200a in regulating milk fat biosynthesis in bovine mammary epithelial cells (BMECs). We discovered that miR-200a inhibited cellular triacylglycerol (TAG) synthesis and suppressed lipid droplet formation; at the same time, miR-200a overexpression suppressed the mRNA and protein expression of milk fat metabolism-related genes, such as fatty acid synthase (FASN), peroxisome proliferator-activated receptor gamma (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), CCAAT enhancer binding protein alpha (CEBPα), etc. However, knocking down miR-200a displayed the opposite results. We uncovered that insulin receptor substrate 2 (IRS2) was a candidate target gene of miR-200a through the bioinformatics online program TargetScan. Subsequently, it was confirmed that miR-200a directly targeted the 3'-untranslated region (3'-UTR) of IRS2 via real-time fluorescence quantitative PCR (RT-qPCR), western blot analysis, and dual-luciferase reporter gene assay. Additionally, IRS2 knockdown in BMECs has similar effects to miR-200a overexpression. Our research set up the mechanism by which miR-200a interacted with IRS2 and discovered that miR-200a targeted IRS2 and modulated the activity of the PI3K/Akt signaling pathway, thereby taking part in regulating milk fat synthesis in BMECs. Our research results provided valuable information on the molecular mechanisms for enhancing milk quality from the view of miRNA-mRNA regulatory networks.
Collapse
Affiliation(s)
- Jianbing Tan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Benshun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Liang Qiu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Ruiying He
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Zhangqing Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Miaomiao Ye
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Wucai Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
- Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
2
|
Li X, Wu Y, Yang X, Gao R, Lu Q, Lv X, Chen Z. The cooperative regulatory effect of the miRNA-130 family on milk fat metabolism in dairy cows. Anim Biosci 2024; 37:1289-1302. [PMID: 38665085 PMCID: PMC11222843 DOI: 10.5713/ab.23.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/02/2024] [Accepted: 03/02/2024] [Indexed: 07/05/2024] Open
Abstract
OBJECTIVE There is a strong relationship between the content of beneficial fatty acids in milk and milk fat metabolic activity in the mammary gland. To improve milk quality, it is therefore necessary to study fatty acid metabolism in bovine mammary gland tissue. In adipose tissue, peroxisome proliferator-activated receptor gamma (PPARG), the core transcription factor, regulates the fatty acid metabolism gene network and determines fatty acid deposition. However, its regulatory effects on mammary gland fatty acid metabolism during lactation have rarely been reported. METHODS Transcriptome sequencing was performed during the prelactation period and the peak lactation period to examine mRNA expression. The significant upregulation of PPARG drew our attention and led us to conduct further research. RESULTS According to bioinformatics prediction, dual-luciferase reporter system detection, real-time quantitative reverse transcription polymerase chain reaction and Western blotting, miR-130a and miR-130b could directly target PPARG and inhibit its expression. Furthermore, triglyceride and oil red O staining proved that miR-130a and miR-130b inhibited milk fat metabolism in bovine mammary epithelial cells (BMECs), while PPARG promoted this metabolism. In addition, we also found that the coexpression of miR-130a and miR-130b significantly enhanced their ability to regulate milk fat metabolism. CONCLUSION In conclusion, our findings indicated that miR-130a and miR-130b could target and repress PPARG and that they also have a functional superposition effect. miR-130a and miR-130b seem to synergistically regulate lipid catabolism via the control of PPARG in BMECs. In the long-term, these findings might be helpful in developing practical means to improve high-quality milk.
Collapse
Affiliation(s)
- Xiaofen Li
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300,
China
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Xiaozhi Yang
- School of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300,
China
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| | - Qinyue Lu
- Laboratory of Animal Developmental Biology, Department of Animal Science, Chungbuk National University, Cheongju 28644,
Korea
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009,
China
- International Joint Research Laboratory, Universities of Jiangsu Province of China, Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009,
China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009,
China
| |
Collapse
|
3
|
Wang Y, Wu Y, Yang S, Gao R, Lv X, Yang Z, Jiao P, Zhang N, Loor JJ, Chen Z. m 6A Methylation Mediates the Function of the circRNA-08436/miR-195/ELOVL6 Axis in Regards to Lipid Metabolism in Dairy Goat Mammary Glands. Animals (Basel) 2024; 14:1715. [PMID: 38929334 PMCID: PMC11201019 DOI: 10.3390/ani14121715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
The nutritional value of goat milk is determined by the composition of its fatty acids, with particular importance placed on the role of unsaturated fatty acids in promoting human health. CircRNAs have been known to affect fatty acid metabolism through different pathways. In this study, high-throughput sequencing was employed to construct expression profiles of mammary tissue harvested during the dry period and peak lactation stages of dairy goats. Differentially expressed circRNAs and mRNAs were screened, revealing significantly higher expression levels of circRNA-08436 and ELOVL6 during the peak lactation period compared with the dry period. Thus, circRNA-08436 and ELOVL6 were chosen for subsequent studies. The findings demonstrated that circRNA-08436 not only promotes the synthesis of triglyceride (TAG) and cholesterol in goat mammary epithelial cells (GMECs), but also increases the concentrations of saturated fatty acids in the cells. Through the utilization of software prediction, the dual luciferase reporter system, and qRT-PCR, it was observed that circRNA-08436 binds to miR-195, with its overexpression reducing the expression levels of miR-195 and inhibiting TAG synthesis. In addition, circRNA-08436 upregulated the expression levels of the miR-195 target gene ELOVL6. The data also revealed that YTHDC1 facilitated the transport of circRNA-08436 from the nucleus to the cytoplasm, while YTHDC2 in the cytoplasm functioned as a "reader" to identify and degrade circRNA-08436. Taken together, these findings contribute to a better understanding of the molecular regulation of fatty acid metabolism in the mammary glands of dairy goats, thus offering a sound theoretical basis for the production of high-quality goat milk.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (Y.W.); (N.Z.)
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Sitian Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Rui Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
| | - Xiaoyang Lv
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China;
| | - Ning Zhang
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (Y.W.); (N.Z.)
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Juan J. Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Zhi Chen
- Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China; (Y.W.); (N.Z.)
- Key Laboratory of Genetics Breeding and Reproduction of Grass Feeding Livestock, Minisitry of Agriculture and Rural Affairs, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi 830000, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Y.W.); (S.Y.); (R.G.); (X.L.); (Z.Y.)
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou 225009, China
| |
Collapse
|
4
|
Wu Y, Zhang W, Wang Y, Lu Q, Zhou J, Chen Z, Yang Z, Loor JJ. Molecular mechanisms in the miR-33a/LPPR4 pathway regulating unsaturated fatty acid synthesis in bovine mammary epithelial cells. Anim Biotechnol 2023; 34:2636-2648. [PMID: 35984635 DOI: 10.1080/10495398.2022.2111308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The regulatory mechanisms governing metabolism of fatty acids in cow mammary gland are crucial for establishing relationships between milk quality and fatty acid content. Both, microRNAs (miRNAs) and protein-coding genes are important factors involved in the regulation of milk fat synthesis. In this study, high-throughput sequencing of miRNAs and mRNAs in bovine mammary gland tissue was performed during peak lactation (3 samples) and late lactation (3 samples) periods to characterize expression profiles. Differential expression (DE) analyses of miRNA and mRNA and miRNA-mRNA regulatory pathway screening were performed. Two-hundred eighty regulatory miRNA-mRNA pairs were identified, including the miR-33a-lipid phosphate phosphatase-related protein type 4 (LPPR4) pathway. Bioinformatics prediction, dual-luciferase reporter system detection, qRT-PCR, and Western blotting revealed that miR-33a can directly target LPPR4 and inhibit its expression. Experiments also revealed that miR-33a promotes the synthesis of triglycerides and increases the content of unsaturated fatty acids (UFAs) in bovine mammary epithelial cells (BMECs). These results indicate that miR-33a via LPPR4 plays an important role in the regulation of milk fat synthesis and UFA levels.
Collapse
Affiliation(s)
- Yanni Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Wei Zhang
- Guangdong Haid Group Co., Ltd, Guangzhou, China
| | - Yuhao Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Qinyue Lu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Jingpeng Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, PR China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Juan J Loor
- Mammalian Nutrition Physiology Genomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| |
Collapse
|
5
|
Quan J, Zhao G, Liu Z, Li L, Lu J, Song G, Kang Y. Competing endogenous RNA (ceRNA) in a non-model animal: Non-coding RNAs respond to heat stress in rainbow trout (Oncorhynchus mykiss) through ceRNA-regulated mechanisms. Int J Biol Macromol 2023; 239:124246. [PMID: 37003385 DOI: 10.1016/j.ijbiomac.2023.124246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/21/2023] [Accepted: 03/18/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Rainbow trout (Oncorhynchus mykiss) is a typical cold-water fish. With global warming and extreme heat, high summer temperatures are the biggest threat to rainbow trout farming. Rainbow trout initiate stress defense mechanisms in response to thermal stimuli, and competing endogenous RNA (ceRNA) regulation of target genes (mRNAs) mediated by non-coding RNAs (microRNAs [miRNAs], long non-coding RNAs) may be the main strategy for responding to thermal stimuli and enhancing adaptation. RESULTS We screened the LOC110485411-novel-m0007-5p-hsp90ab1 ceRNA relationship pairs for affect heat stress in rainbow trout and validated their targeting relationships and functions based on preliminary high-throughput sequencing analysis results. The transfection of exogenous novel-m0007-5p mimics and inhibitors into primary rainbow trout hepatocytes effectively bound and inhibited the target genes hsp90ab1 and LOC110485411 without significant effects on hepatocyte viability, proliferation, and apoptosis. The inhibitory effect of novel-m0007-5p overexpression on hsp90ab1 and LOC110485411 under heat stress was time-efficient. Similarly, small interfering RNAs (siRNAs) affected hsp90ab1 mRNA expression by silencing LOC110485411 expression time-efficiently. CONCLUSIONS In conclusion, we found that in rainbow trout, LOC110485411 and hsp90ab1 can bind competitively to novel-m0007-5p via 'sponge adsorption' and that interference with LOC110485411 affects hsp90ab1 expression. These results provide potential for anti-stress drug screening in rainbow trout.
Collapse
Affiliation(s)
- Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Guolin Song
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yujun Kang
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
6
|
Zong W, Zhang T, Chen B, Lu Q, Cao X, Wang K, Yang Z, Chen Z, Yang Y. Emerging roles of noncoding micro RNAs and circular RNAs in bovine mastitis: Regulation, breeding, diagnosis, and therapy. Front Microbiol 2022; 13:1048142. [PMID: 36458189 PMCID: PMC9707628 DOI: 10.3389/fmicb.2022.1048142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/28/2022] [Indexed: 09/11/2024] Open
Abstract
Bovine mastitis is one of the most troublesome and costly problems in the modern dairy industry, which is not only difficult to monitor, but can also cause economic losses while having significant implications on public health. However, efficacious preventative methods and therapy are still lacking. Moreover, new drugs and therapeutic targets are in increasing demand due to antibiotic restrictions. In recent years, noncoding RNAs have gained popularity as a topic in pathological and genetic studies. Meanwhile, there is growing evidence that they play a role in regulating various biological processes and developing novel treatment platforms. In light of this, this review focuses on two types of noncoding RNAs, micro RNAs and circular RNAs, and summarizes their characterizations, relationships, potential applications as selection markers, diagnostic or treatment targets and potential applications in RNA-based therapy, in order to shed new light on further research.
Collapse
Affiliation(s)
- Weicheng Zong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| | - Tianying Zhang
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic and Translational MedicineXi’an Medical University, Xi’an, China
| | - Bing Chen
- Animal and Plant Inspection and Quarantine Technology Center, Shenzhen Customs, Shenzhen, China
| | - Qinyue Lu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xiang Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kun Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhangping Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhi Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Liu L, Sun B, Zhang F, Zhong Z, Zhang Y, Li F, Zhang T, Khatib H, Wang X. lncRNA MPFAST Promotes Proliferation and Fatty Acid Synthesis of Bovine Mammary Epithelial Cell by Sponging miR-103 Regulating PI3K-AKT Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12004-12013. [PMID: 36112519 DOI: 10.1021/acs.jafc.2c04789] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Long noncoding RNAs (lncRNAs) have an essential role in mammary gland development and lactation. Our earlier study showed that the lncRNA mammary proliferation and fatty acid synthesis-associated transcript (MPFAST) is highly expressed in the Holstein cow mammary gland during the middle lactation period compared to the dry period, which indicates its potential role in lactation. Therefore, gain- and loss-of-function experiments were performed on bovine mammary epithelial cells (BMECs) by cell counting kit 8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), real-time quantitative polymerase chain reaction (RT-qPCR), and western blot. The results indicated that MPFAST promoted the viability and proliferation of BMECs. The oil red O staining and cellular triglyceride assay further showed that MPFAST promoted the number of lipid droplets and cellular triglyceride synthesis in BMECs. Bioinformatics analysis showed that MPFAST could act as a molecular sponge for miR-103, and PIK3R1 was a potential target of miR-103, which was further confirmed by the dual-luciferase reporter assay, RT-qPCR, and western blot. The overexpression of MPFAST promoted the expression of PIK3R1 at mRNA and protein levels. It also significantly increased the mRNA relative expression levels of AKT, mTOR, and SREBP1, and the protein relative expression levels of AKT and p-AKT in the PI3K-AKT signaling pathway. In contrast, the inhibition of MPFAST resulted in the downregulation of the PI3K-AKT signaling pathway genes. These results indicated that MPFAST regulates the expression of the genes in the PI3K-AKT signaling pathway through sponging miR-103 and promotes the proliferation and synthesis of fatty acids of BMECs. Our results would provide a new direction for further exploring the regulatory mechanism of lncRNA in the mammary gland.
Collapse
Affiliation(s)
- Lihua Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bing Sun
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhenyu Zhong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuelang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tongtong Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xin Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Cremonesi P, Capra E, Turri F, Lazzari B, Chessa S, Battelli G, Colombini S, Rapetti L, Castiglioni B. Effect of Diet Enriched With Hemp Seeds on Goat Milk Fatty Acids, Transcriptome, and miRNAs. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.909271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In dairy ruminants, a diet supplemented with feed rich in unsaturated fatty acids can be an effective medium to increase the health-promoting properties of milk, although their effect on the pathways/genes involved in these processes has not been properly and completely defined to date. To improve our knowledge of the cell’s activity in specific conditions, next-generation RNA-sequencing technology was used to allow whole transcriptome characterization under given conditions. In addition to this, microRNAs (miRNAs) have recently been known as post-transcriptional regulators in fatty acid and cholesterol metabolism by targeting lipid metabolism genes. In this study, to analyze the transcriptome and miRNAs in goat milk after a supplemental diet enriched with linoleic acid (hemp seeds), next-generation RNA-sequencing was used in order to point out the general biological mechanisms underlying the effects related to milk fat metabolism. Ten pluriparous Alpine goats were fed with the same pretreatment diet for 40 days; then, they were arranged to two dietary treatments consisting of control (C) and hemp seed (H)-supplemented diets. Milk samples were collected at 40 (time point = T0) and 140 days of lactation (time point = T1). Milk fatty acid (FA) profiles revealed a significant effect of hemp seeds that determined a strong increment in the preformed FA, causing a reduction in the concentration of de-novo FA. Monounsaturated and polyunsaturated n−3 FAs were increased by hemp treatment, determining a reduction in the n−6/n−3 ratio. After removing milk fats and proteins, RNA was extracted from the milk cells and transcriptomic analysis was conducted using Illumina RNA-sequencing. A total of 3,835 genes were highly differentially expressed (p-value < 0.05, fold change > 1.5, and FDR < 0.05) in the H group. Functional analyses evidenced changes in metabolism, immune, and inflammatory responses. Furthermore, modifications in feeding strategies affected also key transcription factors regulating the expression of several genes involved in milk fat metabolism, such as peroxisome proliferator-activated receptors (PPARs). Moreover, 38 (15 known and 23 novel) differentially expressed miRNAs were uncovered in the H group and their potential functions were also predicted. This study gives the possibility to improve our knowledge of the molecular changes occurring after a hemp seed supplementation in the goat diet and increase our understanding of the relationship between nutrient variation and phenotypic effects.
Collapse
|