1
|
Zhang J, Li X, Chen A, Ding M, Li L, Qi Y, Ding C, Cai D, Zhang S. Whole mitochondrial genome analyses of Han population from Shandong of China using massively parallel sequencing. Front Genet 2024; 15:1513412. [PMID: 39678376 PMCID: PMC11638193 DOI: 10.3389/fgene.2024.1513412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction Mitochondrial DNA (mtDNA) has been extensively utilized in archeology, human evolutionary genetics, and forensic genetic for over three decades, primarily due to its maternal inheritance and relatively high mutation rate. The Chinese Han, the largest and most widely distributed ethnic group in China, have been the focus of numerous genetic studies. However, the forensic parameters and genetic structure of the Shandong Han, specifically in relation to the whole mitochondrial genome, remain undocumented. Methods We performed whole mitochondrial genome sequencing on 141 unrelated Han individuals from Shandong province using massively parallel sequencing. Results A total of 135 unique mtDNA haplotypes were identified, classified into 105 haplogroups, resulting in a haplotype diversity value of 0.9993. The discriminatory capacity of whole mitochondrial genome was calculated at 0.9574, compared to 0.8936 when only the control region was analyzed. The majority of the haplogroups observed were specific to East Asian lineages, including D4, D5 and F1. Population comparisons revealed that the modern Shandong Han share genetic connections with ancient populations from the Yellow River and West Liao River basins. Additionally, the Shandong Han may have integrated a significant number of maternal lineages from other regions during their development. The demographic expansion of the Shandong Han is estimated to have occurred approximately 9,000 years ago, corresponding to the Neolithic period, a time of significant cultural and technological development. Discussion The dataset generated in this study is available in the EMPOP database under the accession number EMP00886 and will serve as an important mtDNA reference for forensic casework in China. The study of whole mitochondrial genome based on the analysis of matrilineal genetic structure of the Shandong Han population can help to enrich the forensic mtDNA reference database in East Asia and provide reference for future archeology and forensic genetics research.
Collapse
Affiliation(s)
- Jiashuo Zhang
- School of Archaeology, Jilin University, Changchun, Jilin, China
| | - XueBo Li
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, Shandong, China
- Institute of Forensic Science, Shandong University of Political Science and Law, Jinan, Shandong, China
| | - Anqi Chen
- Institute of Forensic Science, Fudan University, Shanghai, China
| | - Mingxia Ding
- Obstetrics and Gynecology Department, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Liangliang Li
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, Shandong, China
- Institute of Forensic Science, Shandong University of Political Science and Law, Jinan, Shandong, China
| | - Yinghua Qi
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, Shandong, China
- Institute of Forensic Science, Shandong University of Political Science and Law, Jinan, Shandong, China
| | - Chunli Ding
- Key Laboratory of Evidence Identification in Universities of Shandong Province, Shandong University of Political Science and Law, Jinan, Shandong, China
- Institute of Forensic Science, Shandong University of Political Science and Law, Jinan, Shandong, China
| | - Dawei Cai
- School of Archaeology, Jilin University, Changchun, Jilin, China
| | - Suhua Zhang
- Institute of Forensic Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Childebayeva A, Fricke F, Rohrlach AB, Huang L, Schiffels S, Vesakoski O, Mannermaa K, Semerau L, Aron F, Solodovnikov K, Rykun M, Moiseyev V, Khartanovich V, Kovtun I, Krause J, Kuzminykh S, Haak W. Bronze age Northern Eurasian genetics in the context of development of metallurgy and Siberian ancestry. Commun Biol 2024; 7:723. [PMID: 38862782 PMCID: PMC11166947 DOI: 10.1038/s42003-024-06343-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 05/16/2024] [Indexed: 06/13/2024] Open
Abstract
The Eurasian Bronze Age (BA) has been described as a period of substantial human migrations, the emergence of pastoralism, horse domestication, and development of metallurgy. This study focuses on two north Eurasian sites sharing Siberian genetic ancestry. One of the sites, Rostovka, is associated with the Seima-Turbino (ST) phenomenon (~2200-1900 BCE) that is characterized by elaborate metallurgical objects found throughout Northern Eurasia. The genetic profiles of Rostovka individuals vary widely along the forest-tundra Siberian genetic cline represented by many modern Uralic-speaking populations, and the genetic heterogeneity observed is consistent with the current understanding of the ST being a transcultural phenomenon. Individuals from the second site, Bolshoy Oleni Ostrov in Kola, in comparison form a tighter cluster on the Siberian ancestry cline. We further explore this Siberian ancestry profile and assess the role of the ST phenomenon and other contemporaneous BA cultures in the spread of Uralic languages and Siberian ancestry.
Collapse
Affiliation(s)
- Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany.
- Department of Anthropology, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Anthropology, University of Kansas, Lawrence, KS, 66044, USA.
| | - Fabian Fricke
- German Archaeological Institute, Eurasia Department, Berlin, 14195, Germany
| | - Adam Benjamin Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany
- School of Computer and Mathematical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Lei Huang
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany
| | - Outi Vesakoski
- Department of Finnish and Finno-Ugric Languages, University of Turku, Turku, 20014, Finland
| | - Kristiina Mannermaa
- Department of Cultures, University of Helsinki, Yliopistonkatu 4, 00100, Helsinki, Finland
| | - Lena Semerau
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, 07745, Germany
| | - Konstantin Solodovnikov
- Institute of Problems of Northern Development, Tyumen Scientific Center of the Siberian Branch of Russian Academy of Sciences, Tyumen, 625008, Russia
| | - Marina Rykun
- Department of Anthropology and Ethnology, National Research Tomsk State University, Tomsk, 634050, Russia
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, University Embankment, 3, Saint Petersburg, 199034, Russia
| | - Valery Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera), Russian Academy of Sciences, University Embankment, 3, Saint Petersburg, 199034, Russia
| | - Igor Kovtun
- Igor V. Kovtun, Independent Researcher, Kemerovo, 650000, Russia
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany
| | - Sergey Kuzminykh
- Russian Academy of Sciences, Institute of Archaeology, Laboratory of Natural Scientific Methods, Moscow, 117292, Russia
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, D-04103, Leipzig, Germany.
| |
Collapse
|
3
|
Heraclides A, Fernández-Domínguez E. Mitochondrial DNA Consensus Calling and Quality Filtering for Constructing Ancient Human Mitogenomes: Comparison of Two Widely Applied Methods. Int J Mol Sci 2022; 23:4651. [PMID: 35563041 PMCID: PMC9104972 DOI: 10.3390/ijms23094651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/05/2023] Open
Abstract
Retrieving high-quality endogenous ancient DNA (aDNA) poses several challenges, including low molecular copy number, high rates of fragmentation, damage at read termini, and potential presence of exogenous contaminant DNA. All these factors complicate a reliable reconstruction of consensus aDNA sequences in reads from high-throughput sequencing platforms. Here, we report findings from a thorough evaluation of two alternative tools (ANGSD and schmutzi) aimed at overcoming these issues and constructing high-quality ancient mitogenomes. Raw genomic data (BAM/FASTQ) from a total of 17 previously published whole ancient human genomes ranging from the 14th to the 7th millennium BCE were retrieved and mitochondrial consensus sequences were reconstructed using different quality filters, with their accuracy measured and compared. Moreover, the influence of different sequence parameters (number of reads, sequenced bases, mean coverage, and rate of deamination and contamination) as predictors of derived sequence quality was evaluated. Complete mitogenomes were successfully reconstructed for all ancient samples, and for the majority of them, filtering substantially improved mtDNA consensus calling and haplogroup prediction. Overall, the schmutzi pipeline, which estimates and takes into consideration exogenous contamination, appeared to have the edge over the much faster and user-friendly alternative method (ANGSD) in moderate to high coverage samples (>1,000,000 reads). ANGSD, however, through its read termini trimming filter, showed better capabilities in calling the consensus sequence from low-quality samples. Among all the predictors of overall sample quality examined, the strongest correlation was found for the available number of sequence reads and bases. In the process, we report a previously unassigned haplogroup (U3b) for an Early Chalcolithic individual from Southern Anatolia/Northern Levant.
Collapse
Affiliation(s)
- Alexandros Heraclides
- Department of Health Sciences, European University Cyprus, Diogenis Str. 6, Nicosia 2404, Cyprus
| | | |
Collapse
|
4
|
Cardinali I, Bodner M, Capodiferro MR, Amory C, Rambaldi Migliore N, Gomez EJ, Myagmar E, Dashzeveg T, Carano F, Woodward SR, Parson W, Perego UA, Lancioni H, Achilli A. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Front Genet 2022; 12:819337. [PMID: 35069708 PMCID: PMC8773455 DOI: 10.3389/fgene.2021.819337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Edgar J Gomez
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,FamilySearch Int., Salt Lake City, UT, United States
| | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tumen Dashzeveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Francesco Carano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Scott R Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, State College, PA, United States
| | - Ugo A Perego
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,Department of Math and Science, Southeastern Community College, Burlington, IA, United States
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Doumani Dupuy PN. The unexpected ancestry of Inner Asian mummies. Nature 2021; 599:204-206. [PMID: 34707262 DOI: 10.1038/d41586-021-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|