1
|
Cui W, Wang H, Li J, Lv D, Xu J, Liu M, Yin G. Sheep litter size heredity basis using genome-wide selective analysis. Reprod Domest Anim 2024; 59:e14689. [PMID: 39044628 DOI: 10.1111/rda.14689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
Sheep are important herbivorous domestic animal globally, and the Chinese indigenous sheep breed has a multitude of economically significant variations due to the diverse geographical and ecological conditions. In particular, certain native breeds exhibit a visible high litter size phenotype due to the selection pressure of natural and artificial for thousands of years, offering an ideal animal model for investigating sheep's fecundity. In this study, selective signal analysis was performed on public whole-genome sequencing data from 60 sheep across eight breeds to identify candidate genes related to litter size. Results revealed that a total of 34,065,017 single-nucleotide polymorphisms (SNPs) were identified from all sheep, and 65 candidate genes (CDGs) were pinpointed from the top 1% of interacted windows and SNPs between the pairwise fixation index (FST, >0.149543) and cross-population extended haplotype homozygosity (XP-EHH, >0.701551). A total of 41 CDGs (e.g. VRTN, EYA2 and MCPH1) were annotated to 576 GO terms, of which seven terms were directly linked to follicular and embryonic development (e.g. TBXT, BMPR1B, and BMP2). In addition, 73 KEGG pathways were enriched by 21 CDGs (e.g. ENTPD5, ABCD4 and RXFP2), mainly related to Hippo (TCF4, BMPR1B and BMP2), TGF-β (BMPR1B and BMP2), PI3K-Akt (ITGB4, IL4R and PPP2R5A) and Jak-STAT signalling pathways (IL20RA and IL4R). Notably, a series of CDGs was under strong selection in sheep with high litter size traits. These findings result could improve the comprehension of the genetic underpinnings of sheep litter size. Furthermore, it provides valuable CDGS for future molecular breeding.
Collapse
Affiliation(s)
- Weiguo Cui
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hechuan Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jingchun Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Dongyu Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jiayi Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Mengyu Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Guoan Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Li M, Lu Y, Gao Z, Yue D, Hong J, Wu J, Xi D, Deng W, Chong Y. Pan-Omics in Sheep: Unveiling Genetic Landscapes. Animals (Basel) 2024; 14:273. [PMID: 38254442 PMCID: PMC10812798 DOI: 10.3390/ani14020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/04/2024] [Accepted: 01/14/2024] [Indexed: 01/24/2024] Open
Abstract
Multi-omics-integrated analysis, known as panomics, represents an advanced methodology that harnesses various high-throughput technologies encompassing genomics, epigenomics, transcriptomics, proteomics, and metabolomics. Sheep, playing a pivotal role in agricultural sectors due to their substantial economic importance, have witnessed remarkable advancements in genetic breeding through the amalgamation of multiomics analyses, particularly with the evolution of high-throughput technologies. This integrative approach has established a robust theoretical foundation, enabling a deeper understanding of sheep genetics and fostering improvements in breeding strategies. The comprehensive insights obtained through this approach shed light on diverse facets of sheep development, including growth, reproduction, disease resistance, and the quality of livestock products. This review primarily focuses on the application of principal omics analysis technologies in sheep, emphasizing correlation studies between multiomics data and specific traits such as meat quality, wool characteristics, and reproductive features. Additionally, this paper anticipates forthcoming trends and potential developments in this field.
Collapse
Affiliation(s)
- Mengfei Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Ying Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Zhendong Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dan Yue
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
- Faculty of Animal Science and Technology, Yuxi Agricultural Vocational and Technical College, Yuxi 653106, China
| | - Jieyun Hong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Jiao Wu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Dongmei Xi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Weidong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| | - Yuqing Chong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (M.L.); (Y.L.); (Z.G.); (D.Y.); (J.H.); (J.W.); (D.X.); (W.D.)
| |
Collapse
|
3
|
Ge T, Wen Y, Li B, Huang X, Jiang S, Zhang E. Single-cell sequencing reveals the reproductive variations between primiparous and multiparous Hu ewes. J Anim Sci Biotechnol 2023; 14:144. [PMID: 37964337 PMCID: PMC10644470 DOI: 10.1186/s40104-023-00941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND In the modern sheep production systems, the reproductive performance of ewes determines the economic profitability of farming. Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes. Hu sheep, a high-quality Chinese sheep breed, is known for its high fecundity and is often used as a model to study prolificacy traits. In the current study, animals were divided into two groups according to their delivery rates in three consecutive lambing seasons (namely, the high and low reproductive groups with ≥ 3 lambs and one lamb per season, n = 3, respectively). The ewes were slaughtered within 12 h of estrus, and unilateral ovarian tissues were collected and analyzed by 10× Genomics single-cell RNA sequencing. RESULTS A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group. Noticeably, the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells. Furthermore, four granulosa cell subtypes were identified. GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells. Additionally, the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher. These genes inhibit necroptosis and ferroptosis of mural granulosa cells, which helps prevent follicular atresia. CONCLUSIONS This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep. The differences in gene expression profiles, particularly in the granulosa cells, suggest that these cells play a critical role in female prolificacy. The findings also highlight the importance of genes such as JPH1, LOC101112291, FTH1, and FTL in regulating granulosa cell function and follicular development.
Collapse
Affiliation(s)
- Ting Ge
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Yifan Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Bo Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiaoyu Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Shaohua Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Enping Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
4
|
Kulus J, Kranc W, Kulus M, Bukowska D, Piotrowska-Kempisty H, Mozdziak P, Kempisty B, Antosik P. New Gene Markers of Exosomal Regulation Are Involved in Porcine Granulosa Cell Adhesion, Migration, and Proliferation. Int J Mol Sci 2023; 24:11873. [PMID: 37511632 PMCID: PMC10380331 DOI: 10.3390/ijms241411873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 07/30/2023] Open
Abstract
Exosomal regulation is intimately involved in key cellular processes, such as migration, proliferation, and adhesion. By participating in the regulation of basic mechanisms, extracellular vesicles are important in intercellular signaling and the functioning of the mammalian reproductive system. The complexity of intercellular interactions in the ovarian follicle is also based on multilevel intercellular signaling, including the mechanisms involving cadherins, integrins, and the extracellular matrix. The processes in the ovary leading to the formation of a fertilization-ready oocyte are extremely complex at the molecular level and depend on the oocyte's ongoing relationship with granulosa cells. An analysis of gene expression from material obtained from a primary in vitro culture of porcine granulosa cells was employed using microarray technology. Genes with the highest expression (LIPG, HSD3B1, CLIP4, LOX, ANKRD1, FMOD, SHAS2, TAGLN, ITGA8, MXRA5, and NEXN) and the lowest expression levels (DAPL1, HSD17B1, SNX31, FST, NEBL, CXCL10, RGS2, MAL2, IHH, and TRIB2) were selected for further analysis. The gene expression results obtained from the microarrays were validated using quantitative RT-qPCR. Exosomes may play important roles regarding intercellular signaling between granulosa cells. Therefore, exosomes may have significant applications in regenerative medicine, targeted therapy, and assisted reproduction technologies.
Collapse
Affiliation(s)
- Jakub Kulus
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Wiesława Kranc
- Department of Anatomy, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Department of Basic and Preclinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| | - Paul Mozdziak
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
- Physiology Graduate Faculty, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-367 Wroclaw, Poland
- Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland
| |
Collapse
|
5
|
Yousuf S, Malik WA, Feng H, Liu T, Xie L, Miao X. Genome wide identification and characterization of fertility associated novel CircRNAs as ceRNA reveal their regulatory roles in sheep fecundity. J Ovarian Res 2023; 16:115. [PMID: 37340323 DOI: 10.1186/s13048-023-01178-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/29/2023] [Indexed: 06/22/2023] Open
Abstract
Reproductive traits play a vital role in determining the production efficiency of sheep. Maximizing the production is of paramount importance for breeders worldwide due to the growing population. Circular RNAs (circRNAs) act as miRNA sponges by absorbing miRNA activity through miRNA response elements (MREs) and participate in ceRNA regulatory networks (ceRNETs) to regulate mRNA expression. Despite of extensive research on role of circRNAs as miRNA sponges in various species, their specific regulatory roles and mechanism in sheep ovarian tissue are still not well understood. In this study, we performed whole genome sequencing of circRNAs, miRNA and mRNA employing bioinformatic techniques on ovine tissues of two contrasting sheep breeds "Small tail Han (X_LC) and Dolang sheep (D_LC)", which results into identification of 9,878 circRNAs with a total length of 23,522,667 nt and an average length of 2,381.32 nt. Among them, 44 differentially expressed circRNAs (DECs) were identified. Moreover, correlation between miRNA-mRNA and lncRNA-miRNA provided us with to prediction of miRNA binding sites on nine differentially expressed circRNAs and 165 differentially expressed mRNAs using miRanda. miRNA-mRNA and lncRNA-miRNA pairs with negative correlation were selected to determine the ceRNA score along with positively correlated pairs from lncRNA and mRNA network. Integration of ceRNA score and positively correlated pairs exhibit a significant ternary relationship among circRNAs-miRNA-mRNA demonestrated by ceRNA, comprising of 50 regulatory pairs sharring common nodes and predicted potential differentially expressed circRNAs-miRNAs-mRNAs regulatory axis. Based on functional enrichment analysis shortlisted key ceRNA regulatory pairs associated with reproduction including circRNA_3257-novel579_mature-EPHA3, circRNA_8396-novel130_mature-LOC101102473, circRNA_4140- novel34_mature > novel661_mature-KCNK9, and circRNA_8312-novel339_mature-LOC101110545. Furthermore, expression profiling, functional enrichments and qRT-PCR analysis of key target genes infer their implication in reproduction and metabolism. ceRNA target mRNAs evolutionary trajectories, expression profiling, functional enrichments, subcellular localizations following genomic organizations will provide new insights underlying molecular mechanisms of reproduction, and establish a solid foundation for future research. Graphical abstract summarizing the scheme of study.
Collapse
Affiliation(s)
- Salsabeel Yousuf
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Waqar Afzal Malik
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hui Feng
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tianyi Liu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lingli Xie
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangyang Miao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Sadeghi M, Bahrami A, Hasankhani A, Kioumarsi H, Nouralizadeh R, Abdulkareem SA, Ghafouri F, Barkema HW. lncRNA-miRNA-mRNA ceRNA Network Involved in Sheep Prolificacy: An Integrated Approach. Genes (Basel) 2022; 13:genes13081295. [PMID: 35893032 PMCID: PMC9332185 DOI: 10.3390/genes13081295] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the molecular pattern of fertility is considered as an important step in breeding of different species, and despite the high importance of the fertility, little success has been achieved in dissecting the interactome basis of sheep fertility. However, the complex mechanisms associated with prolificacy in sheep have not been fully understood. Therefore, this study aimed to use competitive endogenous RNA (ceRNA) networks to evaluate this trait to better understand the molecular mechanisms responsible for fertility. A competitive endogenous RNA (ceRNA) network of the corpus luteum was constructed between Romanov and Baluchi sheep breeds with either good or poor genetic merit for prolificacy using whole-transcriptome analysis. First, the main list of lncRNAs, miRNAs, and mRNA related to the corpus luteum that alter with the breed were extracted, then miRNA−mRNA and lncRNA−mRNA interactions were predicted, and the ceRNA network was constructed by integrating these interactions with the other gene regulatory networks and the protein−protein interaction (PPI). A total of 264 mRNAs, 14 lncRNAs, and 34 miRNAs were identified by combining the GO and KEGG enrichment analyses. In total, 44, 7, 7, and 6 mRNAs, lncRNAs, miRNAs, and crucial modules, respectively, were disclosed through clustering for the corpus luteum ceRNA network. All these RNAs involved in biological processes, namely proteolysis, actin cytoskeleton organization, immune system process, cell adhesion, cell differentiation, and lipid metabolic process, have an overexpression pattern (Padj < 0.01). This study increases our understanding of the contribution of different breed transcriptomes to phenotypic fertility differences and constructed a ceRNA network in sheep (Ovis aries) to provide insights into further research on the molecular mechanism and identify new biomarkers for genetic improvement.
Collapse
Affiliation(s)
- Masoumeh Sadeghi
- Environmental Health, Zahedan University of Medical Sciences, Zahedan 98, Iran;
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
- Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, 80333 Munich, Germany
- Correspondence: (A.B.); (R.N.); Tel.: +98-9199300065 (A.B.)
| | - Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Hamed Kioumarsi
- Department of Animal Science Research, Gilan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Rasht 43, Iran;
| | - Reza Nouralizadeh
- Department of Food and Drug Control, Faculty of Pharmacy, Jundishapour University of Medical Sciences, Ahvaz 63, Iran
- Correspondence: (A.B.); (R.N.); Tel.: +98-9199300065 (A.B.)
| | - Sarah Ali Abdulkareem
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad 10011, Iraq;
| | - Farzad Ghafouri
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj 31, Iran; (A.H.); (F.G.)
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N4Z6, Canada;
| |
Collapse
|
7
|
Yang F, Yang F, Zhai ZH, Wang SQ, Zhao L, Zhang BL, Chen JC, Wang YQ. Effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in Small-Tailed Han sheep. Front Vet Sci 2022; 9:924373. [PMID: 35937299 PMCID: PMC9353124 DOI: 10.3389/fvets.2022.924373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to determine the potential effects of alfalfa saponins on the production performance, serum biochemical factors, and immune factors in sheep. Twenty Small-Tailed Han sheep were equally and randomly divided into Groups 1–4, fed with diets containing 0, 5, 10, and 20 g alfalfa saponins per kg, respectively, for 40 consecutive days. During the treatments, the body weight change was recorded for each sheep. Before, during, and after the treatments of alfalfa saponins, serum was collected from each group to compare the levels of biochemical and immune factors. All sheep were killed after the treatments, and the longissimus dorsi muscle was collected to compare the meat quality. The results validated the effects of alfalfa saponins on the growth performance and meat quality in Small-Tailed Han sheep, and the supplementation level of 10 g/kg was the best. Alfalfa saponins also had effects on the levels of biochemical factors in serum. However, both dose- and time-dependent effects were observed. After a shorter feeding period (14 days), the concentrations of cholesterol (CHOL) and low-density lipoprotein (LDL) in Groups 2, 3, and 4 were all lower than those in the control group; however, when alfalfa saponins were continuously fed, this effect was not apparent or even gone. Supplying alfalfa saponins increased serum concentrations of IgA, IgG, IgE, IgM, IL-1, IFN-α, and IFN-β. And this effect was distinctly observed in Groups 3 and 4. Based on the current results, the alfalfa saponins concentration of 10 g/kg (for 14 consecutive days) could be suggested as the optimum ratio for good health conditions of Small-Tailed Han sheep.
Collapse
|