1
|
Jiang B, Chen Z, Zhou J. A novel prognostic risk score model based on RNA editing level in lower-grade glioma. Comput Biol Chem 2024; 113:108229. [PMID: 39383624 DOI: 10.1016/j.compbiolchem.2024.108229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024]
Abstract
BACKGROUND Lower-grade glioma (LGG) refers to WHO grade 2 and 3 gliomas. Surgery combined with radiotherapy and chemotherapy can significantly improve the prognosis of LGG patients, but tumor progression is still unavoidable. As a form of posttranscriptional regulation, RNA editing (RE) has been reported to be involved in tumorigenesis and progression and has been intensively studied recently. METHODS Survival data and RE data were subjected to univariate and multivariate Cox regression analysis and lasso regression analysis to establish an RE risk score model. A nomogram combining the risk score and clinicopathological features was built to predict the 1-, 3-, and 5-year survival probability of patients. The relationship among ADAR1, SOD2 and SOAT1 was verified by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) RESULTS: A risk model associated with RE was constructed and patients were divided into different risk groups based on risk scores. The model demonstrated strong prognostic capability, with the area under the ROC curve (AUC) values of 0.882, 0.938, and 0.947 for 1-, 3-, and 5-year survival predictions, respectively. Through receiver operating characteristic curve (ROC) curves and calibration curves, it was verified that the constructed nomogram had better performance than age, grade, and risk score in predicting patient survival probability. Apart from this functional analysis, the results of correlation analyses between risk differentially expressed genes (RDEGs) and RE help us to understand the underlying mechanism of RE in LGG. ADAR may regulate the expression of SOD2 and SOAT1 through gene editing. CONCLUSION In conclusion, this study establishes a novel and accurate 17-RE model and a nomogram for predicting the survival probability of LGG patients. ADAR may affect the prognosis of glioma patients by influencing gene expression.
Collapse
Affiliation(s)
- Bincan Jiang
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China.
| | - Ziyang Chen
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| | - Jiajie Zhou
- Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan Province 421001, China
| |
Collapse
|
2
|
Liu Y, Wang J, Shen X, Li L, Zhang N, Wang X, Tang B. A novel angiogenesis-related scoring model predicts prognosis risk and treatment responsiveness in diffuse large B-cell lymphoma. Clin Exp Med 2023; 23:3781-3797. [PMID: 37402040 DOI: 10.1007/s10238-023-01127-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Diffuse large B cell lymphoma (DLBCL) is a highly heterogeneous disease with varying therapeutic responses and prognoses. Angiogenesis is a crucial factor in lymphoma growth and progression, but no scoring model based on angiogenesis-related genes (ARGs) has been developed for prognostic evaluation of DLBCL patients. In this study, we used univariate Cox regression to identify prognostic ARGs and found two distinct clusters of DLBCL patients in the GSE10846 dataset based on the expression of these prognostic ARGs. These two clusters had different prognoses and immune cell infiltration. Using LASSO regression analysis, we constructed a novel seven-ARG-based scoring model in GSE10846 dataset, and it was further validated in the GSE87371 dataset. The DLBCL patients were divided into high- and low-score groups based on the median risk score as a cut-off. The high-score group had a worse prognosis and showed higher expression of immune checkpoints, M2 macrophages, myeloid-derived suppressor cells, and regulatory T cells, indicating a stronger immunosuppressive environment. DLBCL patients in high-score group were resistant to doxorubicin and cisplatin, which are components of frequently used chemotherapy regimens, but more sensitive to gemcitabine and temozolomide. Using RT-qPCR, we found that two candidate risk genes, RAPGEF2 and PTGER2, were over-expressed in DLBCL tissues compared with control tissues. Taken together, the ARG-based scoring model provides a promising direction for the prognosis and immune status of DLBCL patients, and benefits the development of personalized treatment for DLBCL patients.
Collapse
Affiliation(s)
- Yu Liu
- Department of Infectious Disease, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Jinhua Wang
- Department of Hematology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Xiaochen Shen
- Department of Pathology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Li Li
- Department of Hematology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China
| | - Ning Zhang
- Department of Thyroid Surgery, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, People's Republic of China
| | - Xiaobo Wang
- Department of Hematology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| | - Bo Tang
- Department of Hematology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Zhang F, Wu L, Feng S, Zhao Z, Zhang K, Thakur A, Xu Z, Liang Q, Liu Y, Liu W, Yan Y. FHOD1 is upregulated in glioma cells and attenuates ferroptosis of glioma cells by targeting HSPB1 signaling. CNS Neurosci Ther 2023; 29:3351-3363. [PMID: 37211949 PMCID: PMC10580363 DOI: 10.1111/cns.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023] Open
Abstract
BACKGROUND As a new type of regulatory cell death, ferroptosis has been proven to be involved in cancer pathogenesis and therapeutic response. However, the detailed roles of ferroptosis or ferroptosis-associated genes in glioma remain to be clarified. METHODS Here, we performed the TMT/iTRAQ-Based Quantitative Proteomic Approach to identify the differentially expressed proteins between glioma specimens and adjacent tissues. Kaplan-Meier survival was used to estimate the survival values. We also explored the regulatory roles of abnormally expressed formin homology 2 domain-containing protein 1 (FHOD1) in glioma ferroptosis sensitivity. RESULTS In our study, FHOD1 was identified to be the most significantly upregulated protein in glioma tissues. Multiple glioma datasets revealed that the glioma patients with low FHOD1 expression displayed favorable survival time. Functional analysis proved that the knockdown of FHOD1 inhibited cell growth and improved the cellular sensitivity to ferroptosis in glioma cells T98G and U251. Mechanically, we found the up-regulation and hypomethylation of HSPB1, a negative regulator of ferroptosis, in glioma tissues. FHOD1 knockdown could enhance the ferroptosis sensitivity of glioma cells via up-regulating the methylated heat-shock protein B (HSPB1). Overexpression of HSPB1 significantly reversed FHOD1 knockdown-mediated ferroptosis. CONCLUSIONS In summary, this study demonstrated that the FHOD1-HSPB1 axis exerts marked regulatory effects on ferroptosis, and might affect the prognosis and therapeutic response in glioma.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Physiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Lixiang Wu
- Department of Physiology, School of Basic Medical ScienceCentral South UniversityChangshaChina
| | - Songshan Feng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research InstituteSouthwest UniversityChongqingChina
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer ResearchUniversity of ChicagoChicagoIllinoisUSA
| | - Zhijie Xu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Qiuju Liang
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
| | - Wei Liu
- Department of Pathology, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
4
|
Chi H, Li B, Wang Q, Gao Z, Feng B, Xue H, Li G. Opportunities and challenges related to ferroptosis in glioma and neuroblastoma. Front Oncol 2023; 13:1065994. [PMID: 36937406 PMCID: PMC10021024 DOI: 10.3389/fonc.2023.1065994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
A newly identified form of cell death known as ferroptosis is characterized by the peroxidation of lipids in response to iron. Rapid progress in research on ferroptosis in glioma and neuroblastoma has promoted the exploitation of ferroptosis in related therapy. This manuscript provides a review of the findings on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines the mechanisms involved in ferroptosis in glioma and neuroblastoma. We summarize some recent data on traditional drugs, natural compounds and nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as well as some bioinformatic analyses of genes involved in ferroptosis. Moreover, we summarize some data on the associations of ferroptosis with the tumor immunotherapy and TMZ drug resistance. Finally, we discuss future directions for ferroptosis research in glioma and neuroblastoma and currently unresolved issues.
Collapse
Affiliation(s)
- Huizhong Chi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Qingtong Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bowen Feng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- *Correspondence: Hao Xue, ; Gang Li,
| |
Collapse
|
5
|
Liu H, Tao T. Prognosis and immune features of pyroptosis-related RNA patterns in low-grade glioma. Front Oncol 2022; 12:1015850. [PMID: 36605437 PMCID: PMC9808047 DOI: 10.3389/fonc.2022.1015850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/08/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose Low-grade gliomas (LGG), which are malignant primary brain tumors, are more prevalent in young adults. Pyroptosis, an inflammatory form of programmed cell death, has been shown in recent years to be directly associated with tumor growth and tumor microenvironment (TME). However, the correlation between LGG and pyroptosis remained to be explored. In this research, we explored pyroptosis-related gene expression patterns and their prognostic significance based on transcriptome profiles and clinical data in LGG. Methods We identified 31 pyroptosis-related genes differentially expressed at the mRNA level between the data of LGG patients from TCGA and the data of normal brain tissues from GTEx. Univariate Cox regression analysis was used to screen 16 differentially expressed genes (DEGs) based on survival data. Next, the prognostic model was established using LASSO Cox regression, which divided LGG patients into high- and low- risk subgroups and showed an independent prognostic value for overall survival (OS) combined with clinical factors in the CGGA test cohort. Pyroptosis and immune cells were correlated through the CIBERSORT R package and the TIMER database. Results Based on the analyses of 523 LGG and 1152 normal tissues, nine significant differential genes were identified. The AUC remained at about 0.74 when combined with the risk score and clinical factors. Enrichment analyses revealed that DEGs were mainly enriched in cytokine-cytokine receptor interactions, immune response and chemokine signaling pathways. Immune cell enrichment analysis demonstrated that scores for most immune cell types differed significantly between the high-and low-risk groups, and further infiltrating analysis showed obvious differences between these two risk subgroups. Conclusion Pyroptosis-related genes play a pivotal role in LGG and are associated with tumor immunity, which may be beneficial to the prognosis and immunotherapy of LGG.
Collapse
Affiliation(s)
- Hanzhang Liu
- Morphology Laboratory, Medical College of Nantong University, Nantong, Jiangsu, China,*Correspondence: Tao Tao, ; Hanzhang Liu,
| | - Tao Tao
- Department of Clinical Medicine, Ningbo College of Health Science, Ningbo, Zhejiang, China,*Correspondence: Tao Tao, ; Hanzhang Liu,
| |
Collapse
|
6
|
Systematic Analysis of a Pyroptosis-Related Signature to Predict the Prognosis and Immune Microenvironment of Lower-Grade Glioma. Cells 2022; 11:cells11243980. [PMID: 36552744 PMCID: PMC9776729 DOI: 10.3390/cells11243980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Current treatments for lower-grade glioma (LGG) do not effectively improve life expectancy rates, and this is a major global health concern. Improving our knowledge of this disease will ultimately help to improve prevention, accurate prognosis, and treatment strategies. Pyroptosis is an inflammatory form of regulated cell death, which plays an important role in tumor progression and occurrence. There is still a lack of effective markers to evaluate the prognosis of LGG patients. We collected paraffin-embedded tissue samples and prognostic information from 85 patients with low-grade gliomas and fabricated them into a tissue microarray. Combining data from public databases, we explored the relationship between pyroptosis-related genes (PRGs) and the prognoses of patients with LGG and investigated their correlations with the tumor microenvironment (TME) by means of machine learning, single-cell, immunohistochemical, nomogram, GSEA, and Cox regression analyses. We developed a six-gene PRG-based prognostic model, and the results have identified CASP4 as an effective marker for LGG prognosis predictions. Furthermore, the effects on immune cell infiltration may also provide guidance for future immunotherapy strategies.
Collapse
|
7
|
Li J, Wu F, Xiao X, Su L, Guo X, Yao J, Zhu H. A novel ferroptosis-related gene signature to predict overall survival in patients with osteosarcoma. Am J Transl Res 2022; 14:6082-6094. [PMID: 36247280 PMCID: PMC9556449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Ferroptosis plays vital roles in the pathogenesis of various malignant tumors. However, knowledge on roles of ferroptosis in osteosarcoma remains scarce. In the present study, a comprehensive bioinformatics analysis was performed aiming to identify ferroptosis-related genes (FRGs), construct a FRGs-based model predicting overall survival (OS), and assess the impact of these FRGs on the migration and invasion of osteosarcoma cells. METHODS Initially, data regarding differentially expressed FRGs were obtained from the GSE160881 dataset. Prognostic significance and possible biological functions of these differentially expressed FRGs were comprehensively and systematically explored adopting a series of bioinformatics methods. The impact of cystathionine β-synthase (CBS) on migration and invasion of osteosarcoma cells were assessed using transwell assays. RESULTS A total of 50 FRGs were differentially expressed. Four FRGs including G6PD, VEGFA, CBS, and HMOX1 were used to construct a model predicting OS in osteosarcoma patients. In the training cohort, patients with high risk had significantly poorer OS than those with low risk, which was also demonstrated in validation cohorts (GSE16091 and GSE39058). Furthermore, we established a clinically useful nomogram predicting OS using the four FRGs mentioned above. Risk scores were significantly associated with the proportion of tumor-infiltrating immune cells. Additionally, we used the Cytoscape software to identify hub FRGs, and found that TP53, HMOX1, SLC7A11, HRAS, VEGFA, and TXNRD1 were hub FRGs. By performing in vitro cell culture experiments, we demonstrated that invasion and migration capability of Saos2 and HOS cells were significantly weakened after CBS knock down. CONCLUSIONS In conclusion, gene signatures based on four FRGs were reliable in predicting OS in patients with osteosarcoma. Findings from this study will enable a better understanding of the prognostic significance of FRGs and tumor immunity in osteosarcoma.
Collapse
Affiliation(s)
- Junqing Li
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital)Zhengzhou 450016, China
| | - Feiran Wu
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital)Zhengzhou 450016, China
| | - Xing Xiao
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-sen UniversityShenzhen 518000, China
| | - Li Su
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital)Zhengzhou 450016, China
| | - Xinjun Guo
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital)Zhengzhou 450016, China
| | - Jie Yao
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital)Zhengzhou 450016, China
| | - Huimin Zhu
- Minimally Invasive Spinal Surgery Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province (Henan Provincial Orthopedic Hospital)Zhengzhou 450016, China
| |
Collapse
|
8
|
Bao JH, Lu WC, Duan H, Ye YQ, Li JB, Liao WT, Li YC, Sun YP. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol 2022; 13:933973. [PMID: 36045691 PMCID: PMC9420977 DOI: 10.3389/fimmu.2022.933973] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
Collapse
Affiliation(s)
- Jia-hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei-cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-qi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Jiang-bo Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wen-ting Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yong-chun Li
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yang-peng Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| |
Collapse
|
9
|
Ferroptosis Modulation: Potential Therapeutic Target for Glioblastoma Treatment. Int J Mol Sci 2022; 23:ijms23136879. [PMID: 35805884 PMCID: PMC9266903 DOI: 10.3390/ijms23136879] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme is a lethal disease and represents the most common and severe type of glioma. Drug resistance and the evasion of cell death are the main characteristics of its malignancy, leading to a high percentage of disease recurrence and the patients’ low survival rate. Exploiting the modulation of cell death mechanisms could be an important strategy to prevent tumor development and reverse the high mortality and morbidity rates in glioblastoma patients. Ferroptosis is a recently described type of cell death, which is characterized by iron accumulation, high levels of polyunsaturated fatty acid (PUFA)-containing phospholipids, and deficiency in lipid peroxidation repair. Several studies have demonstrated that ferroptosis has a potential role in cancer treatment and could be a promising approach for glioblastoma patients. Thus, here, we present an overview of the mechanisms of the iron-dependent cell death and summarize the current findings of ferroptosis modulation on glioblastoma including its non-canonical pathway. Moreover, we focused on new ferroptosis-inducing compounds for glioma treatment, and we highlight the key ferroptosis-related genes to glioma prognosis, which could be further explored. Thereby, understanding how to trigger ferroptosis in glioblastoma may provide promising pharmacological targets and indicate new therapeutic approaches to increase the survival of glioblastoma patients.
Collapse
|
10
|
Li X, Xiong K, Bi D, Zhao C. A Novel CRISPR/Cas9 Screening Potential Index for Prognostic and Immunological Prediction in Low-Grade Glioma. Front Genet 2022; 13:839884. [PMID: 35586564 PMCID: PMC9109250 DOI: 10.3389/fgene.2022.839884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/18/2022] [Indexed: 12/05/2022] Open
Abstract
Glioma is a malignancy with the highest mortality in central nervous system disorders. Here, we implemented the computational tools based on CRISPR/Cas9 to predict the clinical outcomes and biological characteristics of low-grade glioma (LGG). The transcriptional expression profiles and clinical phenotypes of LGG patients were retrieved from The Cancer Genome Atlas and Chinese Glioma Genome Atlas. The CERES algorithm was used to screen for LGG-lethal genes. Cox regression and random survival forest were adopted for survival-related gene selection. Nonnegative matrix factorization distinguished patients into different clusters. Single-sample gene set enrichment analysis was employed to create a novel CRISPR/Cas9 screening potential index (CCSPI), and patients were stratified into low- and high-CCSPI groups. Survival analysis, area under the curve values (AUCs), nomogram, and tumor microenvironment exploration were included for the model validation. A total of 20 essential genes in LGG were used to classify patients into two clusters and construct the CCSPI system. High-CCSPI patients were associated with a worse prognosis of both training and validation set (p < 0.0001) and higher immune fractions than low-CCSPI individuals. The CCSPI system had a promising performance with 1-, 3-, and 5-year AUCs of 0.816, 0.779, 0.724, respectively, and the C-index of the nomogram model reached 0.743 (95% CI = 0.725–0.760). Immune-infiltrating cells and immune checkpoints such as PD-1/PD-L1 and POLD3 were positively associated with CCSPI. In conclusion, the CCSPI had prognostic value in LGG, and the model will deepen our cognition of the interaction between the CNS and immune system in different LGG subtypes.
Collapse
Affiliation(s)
- Xiangpan Li
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Kewei Xiong
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.,School of Mathematics and Statistics, Central China Normal University, Wuhan, China
| | - Dong Bi
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Yan X, Ji H, Liu Z, Ma S, Dong J, Jiang X, Hu X, Wang F, Zhao H, Jin J, Zhang J, Wang N, Du J, Hu S. Characterization of the Ferroptosis-Related Genes for Prognosis and Immune Infiltration in Low-Grade Glioma. Front Genet 2022; 13:880864. [PMID: 35559020 PMCID: PMC9086515 DOI: 10.3389/fgene.2022.880864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Although ferroptosis has been validated to play a crucial role in some types of tumors, the influence of ferroptosis-related genes (FRGs) on the immune microenvironment in low-grade glioma (LGG) remains unclear. In this research, we screen the FRGs to assess the prognosis value and immune microenvironment in LGG, to provide reliable diagnosis and treatment evidence for the clinic. Methods: A total of 1,239 patients of LGG samples were selected for subsequent analyses from The Cancer Genome Atlas, Chinese Glioma Genome Atlas, and the Repository of Molecular Brain Neoplasia Data datasets. Univariate Cox regression analysis was used to screen for prognostic FRGs. Consensus clustering was utilized to determine ferroptosis subtypes of LGG patients. Next, the prognostic model was constructed based on differentially expressed FRGs and validation in the validating datasets. The immune microenvironment, biological pathway, and hypoxia score were explored by single-sample gene set enrichment analysis. The potential response of chemotherapy and immune checkpoint blockade therapy was also estimated. In addition, the correlation between the risk score and autophagy-related genes was examined by the Pearson correlation coefficient. Results: A total of three ferroptosis subtypes were identified by consensus clustering for prognostic FRGs which exhibited different outcomes, clinicopathological characteristics, and immune microenvironment. Afterward, a prognostic model that performed great predictive ability based on nine prognostic FRGs has been constructed and validated. Moreover, the prognostic model had the potential to screen the sensitivity to chemotherapy and immunotherapy in LGG patients. Finally, we also found that the prognostic model has a great connection to autophagy and hypoxia. Conclusion: We developed a ferroptosis-related prognostic model which strongly linked to diagnosis, treatment, prognosis, and recurrence of LGG. This study also reveals the connection between ferroptosis and tumor immune microenvironment.
Collapse
Affiliation(s)
- Xiuwei Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hang Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhihui Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Shuai Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiawei Dong
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaoyan Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueyan Hu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Fang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongtao Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiaqi Jin
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jiheng Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Nan Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Jianyang Du
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shaoshan Hu
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Zhou J, Xing Z, Xiao Y, Li M, Li X, Wang D, Dong Z. The Value of H2BC12 for Predicting Poor Survival Outcomes in Patients With WHO Grade II and III Gliomas. Front Mol Biosci 2022; 9:816939. [PMID: 35547391 PMCID: PMC9081347 DOI: 10.3389/fmolb.2022.816939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: Glioma is a common primary malignant brain tumor. Grade II (GII) gliomas are prone to develop into anaplastic grade III (GIII) gliomas, which indicate a higher malignancy and poorer survival outcome. This study aimed to satisfy the increasing demand for novel sensitive biomarkers and potential therapeutic targets in the treatment of GII and GIII gliomas. Methods: A TCGA dataset was used to investigate the expression of H2BC12 mRNA in GII and GIII gliomas and its relation to clinical pathologic characteristics. Glioma tissues were collected to verify results from the TCGA dataset, and H2BC12 mRNA was detected by RT-qPCR. ROC analysis was employed to evaluate the classification power for GII and GIII. The significance of H2BC12 mRNA GII and GIII gliomas was also investigated. In addition, H2BC12 expression-related pathways were enriched by gene set enrichment analysis (GSEA). DNA methylation level and mutation of H2BC12 were analyzed by the UALCAN and CBioPortal databases, respectively. Results: Based on the sample data from multiple databases and RT-qPCR, higher expression of H2BC12 mRNA was found in GII and GIII glioma tissue compared to normal tissue, which was consistent with a trend with our clinical specimen. H2BC12 mRNA had a better power in distinguishing between GII and GIII and yielded an AUC of 0.706 with a sensitivity of 76.9% and specificity of 81.8%. Meanwhile, high H2BC12 levels were associated with IDH status, 1p/19q codeletion, primary therapy outcome, and the histological type of gliomas. Moreover, the overall survival (OS), disease-specific survival (DSS), and progress-free interval (PFI) of GII glioma patients with higher levels of H2BC12 were shorter than those of patients with lower levels as well as GIII patients. In the multivariate analysis, a high H2BC12 level was an independent predictor for poor survival outcomes of gliomas. The Wnt or PI3K-AKT signaling pathways, DNA repair, cellular senescence, and DNA double-strand break repair were differentially activated in phenotypes that were positively associated with H2BC12. H2BC12 DNA methylation was high in TP53 nonmutant patients, and no H2BC12 mutation was observed in gliomas patients. Conclusion: H2BC12 is a promising biomarker for the diagnosis and prognosis of patients with WHO grade II and III gliomas.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Nursing, Liaocheng Vocational and Technical College, Liaocheng, China
| | - Zhaoquan Xing
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Mengyou Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Liaocheng, China
| | - Ding Wang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
| | - Zhaogang Dong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan, China
- *Correspondence: Zhaogang Dong,
| |
Collapse
|