1
|
Meza-Sosa KF, Valle-Garcia D, González-Conchillos H, Blanco-Ayala T, Salazar A, Flores I, Gómez-Manzo S, González Esquivel DF, Pérez de la Cruz G, Pineda B, Pérez de la Cruz V. Molecular Mimicry between Toxoplasma gondii B-Cell Epitopes and Neurodevelopmental Proteins: An Immunoinformatic Approach. Biomolecules 2024; 14:933. [PMID: 39199321 PMCID: PMC11352964 DOI: 10.3390/biom14080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 09/01/2024] Open
Abstract
Epidemiological studies and meta-analyses have shown a strong association between high seroprevalence of Toxoplasma gondii (T. gondii) and schizophrenia. Schizophrenic patients showed higher levels of anti-Toxoplasma immunoglobulins M and G (IgM and IgG) when compared to healthy controls. Previously, in a rat model, we demonstrated that the progeny of mothers immunized with T. gondii lysates before gestation had behavioral and social impairments during adulthood. Therefore, we suggested that T. gondii infection can trigger autoreactivity by molecularly mimicking host brain proteins. Here, we aimed to identify the occurrence of antigenic mimicry between T. gondii epitopes and host brain proteins. Using a bioinformatic approach, we predicted T. gondii RH-88 B cell epitopes and compared them to human cell-surface proteins involved in brain development and differentiation (BrainS). Five different algorithms for B-cell-epitope prediction were used and compared, resulting in 8584 T. gondii epitopes. We then compared T. gondii predicted epitopes to BrainS proteins by local sequence alignments using BLASTP. T. gondii immunogenic epitopes significantly overlapped with 42 BrainS proteins. Among these overlapping proteins essential for brain development and differentiation, we identified HSP90 and NOTCH receptors as the proteins most likely to be targeted by the maternally generated pathogenic antibodies due to their topological overlap at the extracellular region of their sequence. This analysis highlights the relevance of pregestational clinical surveillance and screening for potential pathogenic anti-T. gondii antibodies. It also identifies potential targets for the design of vaccines that could prevent behavioral and cognitive impairments associated with pre-gestational T. gondii exposure.
Collapse
Affiliation(s)
- Karla F. Meza-Sosa
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - David Valle-Garcia
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Hugo González-Conchillos
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Tonali Blanco-Ayala
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Alelí Salazar
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Itamar Flores
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Mexico City 11350, Mexico
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Dinora Fabiola González Esquivel
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| | - Gonzalo Pérez de la Cruz
- Department of Mathematics, Faculty of Sciences, Universidad Nacional Autónoma de Mexico (UNAM), Mexico City 04510, Mexico;
| | - Benjamín Pineda
- Neuroimmunology Department, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (D.V.-G.); (H.G.-C.); (A.S.); (I.F.)
| | - Verónica Pérez de la Cruz
- Neurochemistry and Behavior Laboratory, National Institute of Neurology and Neurosurgery “Manuel Velasco Suárez”, Mexico City 14269, Mexico; (K.F.M.-S.); (T.B.-A.); (D.F.G.E.)
| |
Collapse
|
2
|
Zhang J, Yao Y, Tan Y, Hu HY, Zeng LX, Zhang GQ. Genetic analysis of seven patients with inherited ichthyosis and Nagashima‑type palmoplantar keratoderma. Mol Med Rep 2024; 30:111. [PMID: 38695247 PMCID: PMC11094583 DOI: 10.3892/mmr.2024.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/22/2024] [Indexed: 05/18/2024] Open
Abstract
Inherited ichthyosis comprises a series of heterogeneous dermal conditions; it mainly manifests as widespread hyperkeratosis, xerosis and scaling of the skin. At times, overlapping symptoms require differential diagnosis between ichthyosis and several other similar disorders. The present study reports seven patients with confirmed or suspected to be associated with ichthyosis by conducting a thorough clinical and genetic investigation. Genetic testing was conducted using whole‑exome sequencing, with Sanger sequencing as the validation method. The MEGA7 program was used to analyze the conservation of amino acid residues affected by the detected missense variants. The enrolled patients exhibited ichthyosis‑like but distinct clinical manifestations. Genetic analysis identified diagnostic variations in the FLG, STS, KRT10 and SERPINB7 genes and clarified the carrying status of each variant in the respective family members. The two residues affected by the detected missense variants remained conserved across multiple species. Of note, the two variants, namely STS: c.452C>T(p.P151L) and c.647_650del(p.L216fs) are novel. In conclusion, a clear genetic differential diagnosis was made for the enrolled ichthyosis‑associated patients; the study findings also extended the mutation spectrum of ichthyosis and provided solid evidence for the counseling of the affected families.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Gynecology and Obstetrics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 102208, P.R. China
| | - Yue Yao
- Department of Dermatology, The First Hospital of Hebei Medical University, Candidate Branch of National Clinical Research Center for Skin Diseases, Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, Hebei 050030, P.R. China
| | - Ya Tan
- Department of Obstetrics and Gynecology, Peking University International Hospital, Beijing 102206, P.R. China
| | - Hua-Ying Hu
- Jiaen Genetics Laboratory, Beijing Jiaen Hospital, Beijing 100191, P.R. China
| | - Lin-Xi Zeng
- Department of Dermatology, The First Hospital of Hebei Medical University, Candidate Branch of National Clinical Research Center for Skin Diseases, Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, Hebei 050030, P.R. China
| | - Guo-Qiang Zhang
- Department of Dermatology, The First Hospital of Hebei Medical University, Candidate Branch of National Clinical Research Center for Skin Diseases, Hebei Provincial Innovation Center of Dermatology and Medical Cosmetology Technology, Shijiazhuang, Hebei 050030, P.R. China
| |
Collapse
|
3
|
Sun L, Dai J, Zhang Y, Zhou L, Ren Y, Wang H. A novel NTRK1 splice site variant causing congenital insensitivity to pain with anhidrosis in a Chinese family. Front Genet 2024; 15:1345081. [PMID: 38798698 PMCID: PMC11116696 DOI: 10.3389/fgene.2024.1345081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Background Congenital insensitivity to pain with anhidrosis (CIPA, OMIM #256800), also known as hereditary sensory and autonomic neuropathy type Ⅳ (HSAN-IV), is a rare autosomal recessive disorder characterized by recurrent episodic fevers, anhidrosis, insensitivity to noxious stimuli, self-mutilating behavior and intellectual disability. CIPA can be caused by the variants in NTRK1 gene, which encodes a high-affinity tyrosine kinase receptor for nerve growth factor. To ascertain the hereditary cause of a patient with CIPA accompanied by the additional symptoms of mild growth retardation, prone to fracture, underdeveloped nails of fingers and toes, irregular tooth alignment, enamel hypoplasia, postoperative wound healing difficulty, hand and limb deformity, and dislocation of hip joint, whole exome sequencing was used and revealed a compound heterozygous variant in NTRK1. Methods DNA was extracted from peripheral blood samples of pediatric patients and their parents, and subjected to comprehensive analysis using whole-exome sequencing (WES), followed by verification of variant sites in the NTRK1 gene through Sanger sequencing. To elucidate the functional impact of the newly discovered variants, an in vitro experimental system was established. Splicing analysis was conducted using PCR and Sanger sequencing, while expression levels were assessed through qPCR and Western blot techniques. Results One hotspot variant c.851-33T>A(ClinVar ID: 21308) and a novel variant c.850 + 5G>A(ClinVar ID:3069176) was inherited from her father and mother, respectively, identified in the affected individuals. The c.850 + 5G>A variant in NTRK1 resulted in two forms of aberrant mRNA splicing: 13bp deletion (c.838_850del13, p. Val280Ser fs180) and 25bp deletion (826_850del25, p. Val276Ser fs180) in exon 7, both leading to a translational termination at a premature stop codon and forming a C-terminal truncated protein. The expression of two abnormal splicing isoforms was decreased both in the level of mRNA and protein. Conclusion In conclusion, this study elucidated the genetic cause of a patient with CIPA and identified a novel variant c.850 + 5G>A in NTRK1, which broadened the and enriched the NTRK1 mutation spectrum.
Collapse
Affiliation(s)
- Ling Sun
- Department of Cardiology, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jin Dai
- Department of Orthopaedics, Suzhou, Jiangsu, China
| | - Yuan Zhang
- Department of Clinical Laboratory, Suzhou, Jiangsu, China
- Laboratory of Pediatric Research, Suzhou, Jiangsu, China
| | - Lijun Zhou
- Department of Clinical Laboratory, Suzhou, Jiangsu, China
- Laboratory of Pediatric Research, Suzhou, Jiangsu, China
| | - Yaqiong Ren
- Department of Clinical Laboratory, Suzhou, Jiangsu, China
- Laboratory of Pediatric Research, Suzhou, Jiangsu, China
| | - Hongying Wang
- Department of Clinical Laboratory, Suzhou, Jiangsu, China
- Laboratory of Pediatric Research, Suzhou, Jiangsu, China
- Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Fan Y, Zhang B, Du X, Wang B, Yan Q, Guo L, Yao W. Regulating Tumorigenicity and Cancer Metastasis through TRKA Signaling. Curr Cancer Drug Targets 2024; 24:271-287. [PMID: 37670705 DOI: 10.2174/1568009623666230904150957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 09/07/2023]
Abstract
Tropomyosin receptor kinase (TRK) A, TRKA, is a specific binding receptor of nerve growth factor (NGF), which plays an essential role in the occurrence and progression of human cancers. TRKA overexpression has been proven to be a powerful carcinogenic driver and has been verified in many tumors. The TRKA receptor kinase domain is over-activated in an NGF-dependent manner, accompanied by activation of downstream signal pathways, such as RAS-MAPK, PI3K-AKT, JAK2-STAT3 pathway, PLC γ pathway, and Hippo pathway, which participate in tumor cell proliferation, invasion, epithelial-mesenchymal transition (EMT), perineural invasion (PNI), drug resistance, and cancer pain. In addition, chimeric oncogenes produced by the fusion of NTRK1 and other genes are also the direct cause of tumorigenesis and cancer development. The newly developed TRK inhibitors can improve symptoms and tumor regression in cancer patients with overexpression of TRKA or NTRK1 fusion gene. With the emergence of drug resistance, next generation of TRK inhibitors can still maintain strong clinical efficacy in the case of TRK kinase domain mutations, and these inhibitors are in clinical trials. This review summarizes the characteristics and research progress of TRKA, focusing on the regulatory role of the TRKA signal pathway in different tumors. In addition, we have summarized the clinical significance of TRKA and the TRK inhibitors. This review may provide a new reference for the study of the mechanism of TRKA in different tumors, and also provide a new perspective for the in-depth understanding of the role of TRKA as a biomarker and therapeutic target in human cancer.
Collapse
Affiliation(s)
- Yichao Fan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Boya Zhang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xinhui Du
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Bangmin Wang
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Qiang Yan
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Liangyu Guo
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Weitao Yao
- Henan Cancer Hospital, Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
5
|
Yang K, Wu J, Li S, Wang S, Zhang J, Wang YP, Yan YS, Hu HY, Xiong MF, Bai CB, Sun YQ, Chen WQ, Zeng Y, Yuan JL, Yin CH. NTRK1 knockdown induces mouse cognitive impairment and hippocampal neuronal damage through mitophagy suppression via inactivating the AMPK/ULK1/FUNDC1 pathway. Cell Death Discov 2023; 9:404. [PMID: 37907480 PMCID: PMC10618268 DOI: 10.1038/s41420-023-01685-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 11/02/2023] Open
Abstract
Hippocampal neuronal damage may induce cognitive impairment. Neurotrophic tyrosine kinase receptor 1 (NTRK1) reportedly regulates neuronal damage, although the underlying mechanism remains unclear. The present study aimed to investigate the role of NTRK1 in mouse hippocampal neuronal damage and the specific mechanism. A mouse NTRK1-knockdown model was established and subjected to pre-treatment with BAY-3827, followed by a behavioral test, Nissl staining, and NeuN immunofluorescence (IF) staining to evaluate the cognitive impairment and hippocampal neuronal damage. Next, an in vitro analysis was conducted using the CCK-8 assay, TUNEL assay, NeuN IF staining, DCFH-DA staining, JC-1 staining, ATP content test, mRFP-eGFP-LC3 assay, and LC3-II IF staining to elucidate the effect of NTRK1 on mouse hippocampal neuronal activity, apoptosis, damage, mitochondrial function, and autophagy. Subsequently, rescue experiments were performed by subjecting the NTRK1-knockdown neurons to pre-treatment with O304 and Rapamycin. The AMPK/ULK1/FUNDC1 pathway activity and mitophagy were detected using western blotting (WB) analysis. Resultantly, in vivo analysis revealed that NTRK1 knockdown induced mouse cognitive impairment and hippocampal tissue damage, in addition to inactivating the AMPK/ULK1/FUNDC1 pathway activity and mitophagy in the hippocampal tissues of mice. The treatment with BAY-3827 exacerbated the mouse depressive-like behavior induced by NTRK1 knockdown. The results of in vitro analysis indicated that NTRK1 knockdown attenuated viability, NeuN expression, ATP production, mitochondrial membrane potential, and mitophagy, while enhancing apoptosis and ROS production in mouse hippocampal neurons. Conversely, pre-treatment with O304 and rapamycin abrogated the suppression of mitophagy and the promotion of neuronal damage induced upon NTRK1 silencing. Conclusively, NTRK1 knockdown induces mouse hippocampal neuronal damage through the suppression of mitophagy via inactivating the AMPK/ULK1/FUNDC1 pathway. This finding would provide insight leading to the development of novel strategies for the treatment of cognitive impairment induced due to hippocampal neuronal damage.
Collapse
Affiliation(s)
- Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Jue Wu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Shang Li
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Shan Wang
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Zhang
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, 050011, China
| | - Yi-Peng Wang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - You-Sheng Yan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Hua-Ying Hu
- Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ming-Fang Xiong
- Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Chao-Bo Bai
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China
| | - Yong-Qing Sun
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China
| | - Wen-Qi Chen
- Prenatal Diagnosis Center, Shijiazhuang Obstetrics and Gynecology Hospital, Key Laboratory of Maternal and Fetal Medicine of Hebei Province, Shijiazhuang, Hebei, 050011, China
| | - Yang Zeng
- Institute of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China.
| | - Jun-Liang Yuan
- Department of Neurology, Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, 100191, China.
| | - Cheng-Hong Yin
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital; Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, 100026, China.
| |
Collapse
|
6
|
Zhao S, Zhang X, Zhang M. Trends in Congenital Insensitivity to Pain with Anhidrosis: A Bibliometric Analysis from 2000 to 2021. J Pain Res 2022; 15:3911-3919. [DOI: 10.2147/jpr.s390207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
|
7
|
Shen M, Yang G, Chen Z, Yang K, Dong H, Yin C, Cheng Y, Zhang C, Gu F, Yang Y, Tian Y. Identification of novel variations in SLC6A8 and GAMT genes causing cerebral creatine deficiency syndrome. Clin Chim Acta 2022; 532:29-36. [PMID: 35588794 DOI: 10.1016/j.cca.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/24/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Cerebral creatine deficiency syndromes (CCDSs) are a group of rare mendelian disorders mainly characterized by intellectual disability, movement anomaly, behavior disorder and seizures. SLC6A8, GAMT, and GATM are known genes responsible for CCDS. In this study, seven pediatric patients with developmental delay were recruited and submitted to a series of clinical evaluation, laboratory testing, and genetic analysis. The clinical manifestations and core biochemical indications of each child were basically consistent with the diagnosis of CCDS. Genetic diagnosis determined that all patients were positive for SLC6A8 or GAMT variation. A total of 12 variants were identified in this cohort, including six novel ones. The frequency of these variants, the Revel scores and the conservatism of the affected amino acids support their pathogenicity. Our findings expanded the mutation spectrum of CCDS disorders, and provided solid evidence for the counseling to affected families.
Collapse
Affiliation(s)
- Ming Shen
- Research Center for Translational Medicine Laboratory, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Guangming Yang
- Research Center for Translational Medicine Laboratory, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Zhehui Chen
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Hui Dong
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chengliang Yin
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yuxuan Cheng
- Birth Defects Prevention and Control Technology Research Center, Medical Research and Innovation Department, Chinese PLA General Hospital, Beijing, China
| | - Chunyan Zhang
- Birth Defects Prevention and Control Technology Research Center, Medical Research and Innovation Department, Chinese PLA General Hospital, Beijing, China
| | - Fangyan Gu
- Clinical Biobank Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaping Tian
- Birth Defects Prevention and Control Technology Research Center, Medical Research and Innovation Department, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|