1
|
Hamamoto R, Koyama T, Kouno N, Yasuda T, Yui S, Sudo K, Hirata M, Sunami K, Kubo T, Takasawa K, Takahashi S, Machino H, Kobayashi K, Asada K, Komatsu M, Kaneko S, Yatabe Y, Yamamoto N. Introducing AI to the molecular tumor board: one direction toward the establishment of precision medicine using large-scale cancer clinical and biological information. Exp Hematol Oncol 2022; 11:82. [PMID: 36316731 PMCID: PMC9620610 DOI: 10.1186/s40164-022-00333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
Since U.S. President Barack Obama announced the Precision Medicine Initiative in his New Year's State of the Union address in 2015, the establishment of a precision medicine system has been emphasized worldwide, particularly in the field of oncology. With the advent of next-generation sequencers specifically, genome analysis technology has made remarkable progress, and there are active efforts to apply genome information to diagnosis and treatment. Generally, in the process of feeding back the results of next-generation sequencing analysis to patients, a molecular tumor board (MTB), consisting of experts in clinical oncology, genetic medicine, etc., is established to discuss the results. On the other hand, an MTB currently involves a large amount of work, with humans searching through vast databases and literature, selecting the best drug candidates, and manually confirming the status of available clinical trials. In addition, as personalized medicine advances, the burden on MTB members is expected to increase in the future. Under these circumstances, introducing cutting-edge artificial intelligence (AI) technology and information and communication technology to MTBs while reducing the burden on MTB members and building a platform that enables more accurate and personalized medical care would be of great benefit to patients. In this review, we introduced the latest status of elemental technologies that have potential for AI utilization in MTB, and discussed issues that may arise in the future as we progress with AI implementation.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Takafumi Koyama
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Nobuji Kouno
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.258799.80000 0004 0372 2033Department of Surgery, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto, 606-8303 Japan
| | - Tomohiro Yasuda
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.417547.40000 0004 1763 9564Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601 Japan
| | - Shuntaro Yui
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.417547.40000 0004 1763 9564Research and Development Group, Hitachi, Ltd., 1-280 Higashi-koigakubo, Kokubunji, Tokyo, 185-8601 Japan
| | - Kazuki Sudo
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.272242.30000 0001 2168 5385Department of Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Makoto Hirata
- grid.272242.30000 0001 2168 5385Department of Genetic Medicine and Services, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Kuniko Sunami
- grid.272242.30000 0001 2168 5385Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashi Kubo
- grid.272242.30000 0001 2168 5385Department of Laboratory Medicine, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Ken Takasawa
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Satoshi Takahashi
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Hidenori Machino
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Kazuma Kobayashi
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Ken Asada
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Masaaki Komatsu
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Syuzo Kaneko
- grid.272242.30000 0001 2168 5385Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.509456.bCancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo, 103-0027 Japan
| | - Yasushi Yatabe
- grid.272242.30000 0001 2168 5385Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan ,grid.272242.30000 0001 2168 5385Division of Molecular Pathology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Noboru Yamamoto
- grid.272242.30000 0001 2168 5385Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| |
Collapse
|
2
|
Lin PC, Tsai YS, Yeh YM, Shen MR. Cutting-Edge AI Technologies Meet Precision Medicine to Improve Cancer Care. Biomolecules 2022; 12:1133. [PMID: 36009026 PMCID: PMC9405970 DOI: 10.3390/biom12081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/18/2022] Open
Abstract
To provide precision medicine for better cancer care, researchers must work on clinical patient data, such as electronic medical records, physiological measurements, biochemistry, computerized tomography scans, digital pathology, and the genetic landscape of cancer tissue. To interpret big biodata in cancer genomics, an operational flow based on artificial intelligence (AI) models and medical management platforms with high-performance computing must be set up for precision cancer genomics in clinical practice. To work in the fast-evolving fields of patient care, clinical diagnostics, and therapeutic services, clinicians must understand the fundamentals of the AI tool approach. Therefore, the present article covers the following four themes: (i) computational prediction of pathogenic variants of cancer susceptibility genes; (ii) AI model for mutational analysis; (iii) single-cell genomics and computational biology; (iv) text mining for identifying gene targets in cancer; and (v) the NVIDIA graphics processing units, DRAGEN field programmable gate arrays systems and AI medical cloud platforms in clinical next-generation sequencing laboratories. Based on AI medical platforms and visualization, large amounts of clinical biodata can be rapidly copied and understood using an AI pipeline. The use of innovative AI technologies can deliver more accurate and rapid cancer therapy targets.
Collapse
Affiliation(s)
- Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yi-Shan Tsai
- Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Meng-Ru Shen
- Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Department of Pharmacology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| |
Collapse
|
3
|
Wager K, Chari D, Ho S, Rees T, Penner O, Schijvenaars BJA. Identifying and Validating Networks of Oncology Biomarkers Mined From the Scientific Literature. Cancer Inform 2022; 21:11769351221086441. [PMID: 35342286 PMCID: PMC8943609 DOI: 10.1177/11769351221086441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/18/2022] [Indexed: 11/17/2022] Open
Abstract
Biomarkers, as measurements of defined biological characteristics, can play a pivotal role in estimations of disease risk, early detection, differential diagnosis, assessment of disease progression and outcomes prediction. Studies of cancer biomarkers are published daily; some are well characterized, while others are of growing interest. Managing this flow of information is challenging for scientists and clinicians. We sought to develop a novel text-mining method employing biomarker co-occurrence processing applied to a deeply indexed full-text database to generate time-interval–delimited biomarker co-occurrence networks. Biomarkers across 6 cancer sites and a cancer-agnostic network were successfully characterized in terms of their emergence in the published literature and the context in which they are described. Our approach, which enables us to find publications based on biomarker relationships, identified biomarker relationships not known to existing interaction networks. This search method finds relevant literature that could be missed with keyword searches, even if full text is available. It enables users to extract relevant biological information and may provide new biological insights that could not be achieved by individual review of papers.
Collapse
|