1
|
Jan A, Mothana RA, Kaimori JY, Muhammad T, Khan M, Ali SS, Rahman N, Alanzi AR. Identification of genetic risk variants for Type-2 Diabetes mellitus in Pakistani Pashtun population: A case-control association study. Pak J Med Sci 2024; 40:2336-2343. [PMID: 39554687 PMCID: PMC11568737 DOI: 10.12669/pjms.40.10.10292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/02/2024] [Accepted: 09/18/2024] [Indexed: 11/19/2024] Open
Abstract
Background and Objective Pakistan, a South Asian developing country, is experiencing a rapid increase in number of diabetes cases. High prevalence ratio of diabetes in Pakistani population and lack of genetic research studies prompted us to design this study. This present study investigated Pakistani Pashtun population for (known and novel SNPs) and its possible correlation with Type-2 Diabetes Mellitus (T2DM). Methods This two stage (discovery & validation stage), case-control association study included one thousand individuals (Patients with T2DM=500 & controls=500) from eight districts of Khyber Pakhtunkhwa Pakistan. The study duration/period was from March 2018 to January 2020. In the first stage (the discovery stage) the target population was screened for known and novel T2DM-associated genetic markers. In the validation stage, identified variants were confirmed for T2DM association using MassARRAY genotyping and association analysis. Results Exome sequencing detected eleven known and four novel/new genetic markers in the study population. Novel variants were preferred over the known for follow-up analysis/validation. Among the identified variants strong associations were confirmed for the following variants; rs1781133/ANKRD65 (OR=2.10, 95%Cl=1.06-3.08, P=0.003) rs2274791/TTLL10 (OR=1.97, 95%Cl=1.36-2.62, P=0.025), rs71628928/RNF223 (OR=1.82, 95%Cl=0.97-1.92, P=0.041), and rs609805/SCNN1D (OR=2.21, 95%Cl=1.92-3.09, P=0.001) with T2DM; other reported variants showed no noticeable association (having P>0.05) with T2DM. Conclusion This study reports new genetic risk variants for T2DM in Pashtun population providing valuable insights into the genetic basis of T2DM in this group.
Collapse
Affiliation(s)
- Asif Jan
- Asif Jan, District Headquarter Hospital (DHQH) Charsadda, Charsadda 24430, Pakistan. Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Ramzi A. Mothana
- Ramzi A. Mothana, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 1151, Saudi Arabia
| | - Jun-Ya Kaimori
- Jun-Ya Kaimori, Department of Nephrology, Osaka University Graduate School of Medicine, Suita, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan. Institute of Medical Science, University of Toronto, Toronto 43964, ON, Canada
| | - Tahir Muhammad
- Tahir Muhammad, Molecular Neuropsychiatry & Development (MiND) Lab, Campbell Family Mental Health, Research Institute, Centre for Addiction & Mental Health, Toronto 43964, ON, Canada
| | - Mehtab Khan
- Mehtab Khan, Department of Biology, Faculty of Science, University of Moncton, Canada
| | - Syed Shaukat Ali
- Syed Shaukat Ali, Department of Pharmacy, University of Malakand, Pakistan
| | - Naveed Rahman
- Naveed Rahman, Department of Pharmacy, University of Peshawar, Peshawar 25000, Pakistan
| | - Abdullah R. Alanzi
- Abdullah R. Alanzi, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 1151, Saudi Arabia
| |
Collapse
|
2
|
Ray GW, Zeng Q, Kusi P, Zhang H, Shao T, Yang T, Wei Y, Li M, Che X, Guo R. Genetic and inflammatory factors underlying gestational diabetes mellitus: a review. Front Endocrinol (Lausanne) 2024; 15:1399694. [PMID: 38694942 PMCID: PMC11061502 DOI: 10.3389/fendo.2024.1399694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Gestational diabetes mellitus (GDM) poses a significant global health concern, impacting both maternal and fetal well-being. Early detection and treatment are imperative to mitigate adverse outcomes during pregnancy. This review delves into the pivotal role of insulin function and the influence of genetic variants, including SLC30A8, CDKAL1, TCF7L2, IRS1, and GCK, in GDM development. These genetic variations affect beta-cell function and insulin activity in crucial tissues, such as muscle, disrupting glucose regulation during pregnancy. We propose a hypothesis that this variation may disrupt zinc transport, consequently impairing insulin production and secretion, thereby contributing to GDM onset. Furthermore, we discussed the involvement of inflammatory pathways, such as TNF-alpha and IL-6, in predisposing individuals to GDM. Genetic modulation of these pathways may exacerbate glucose metabolism dysregulation observed in GDM patients. We also discussed how GDM affects cardiovascular disease (CVD) through a direct correlation between pregnancy and cardiometabolic function, increasing atherosclerosis, decreased vascular function, dyslipidemia, and hypertension in women with GDM history. However, further research is imperative to unravel the intricate interplay between inflammatory pathways, genetics, and GDM. This understanding is pivotal for devising targeted gene therapies and pharmacological interventions to rectify genetic variations in SLC30A8, CDKAL1, TCF7L2, IRS1, GCK, and other pertinent genes. Ultimately, this review offers insights into the pathophysiological mechanisms of GDM, providing a foundation for developing strategies to mitigate its impact.
Collapse
Affiliation(s)
- Gyan Watson Ray
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Qiaoli Zeng
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Phidelia Kusi
- University of Ghana, Ministry of Fisheries and Aquaculture Development, Fisheries Commission, Accra, Ghana
| | - Hengli Zhang
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Taotao Shao
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
| | - Taili Yang
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Yue Wei
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| | - Mianqin Li
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Xiaoqun Che
- Department of Obstetric, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
- Reproductive Medicine Center, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, Guangdong, China
| | - Runmin Guo
- Department of Internal Medicine, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
- Key Laboratory of Research in Maternal and Child Medicine and Birth Defects, Guangdong Medical University, Foshan, China
- Matenal and Child Research Institute, Shunde Women and Children’s Hospital (Maternity and Child Healthcare Hospital of Shunde Foshan), Guangdong Medical University, Foshan, China
| |
Collapse
|
3
|
Cheng YF, Yang CY, Tsai MC. Shared Genetics between Age at Menarche and Type 2 Diabetes Mellitus: Genome-Wide Genetic Correlation Study. Biomedicines 2024; 12:157. [PMID: 38255262 PMCID: PMC10813301 DOI: 10.3390/biomedicines12010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Age at menarche (AAM) has been associated with type 2 diabetes mellitus (T2DM). However, little is known about their shared heritability. Methods: Our data comes from the Taiwan Biobank. Genome-wide association studies (GWASs) were conducted to identify single-nucleotide polymorphisms (SNPs) related to AAM-, T2DM-, and T2DM-related phenotypes, such as body fat percentage (BFP), fasting blood glucose (FBG), and hemoglobin A1C (HbA1C). Further, the conditional false discovery rate (cFDR) method was applied to examine the shared genetic signals. Results: Conditioning on AAM, Quantile-quantile plots showed an earlier departure from the diagonal line among SNPs associated with BFP and FBG, indicating pleiotropic enrichments among AAM and these traits. Further, the cFDR analysis found 39 independent pleiotropic loci that may underlie the AAM-T2DM association. Among them, FN3KRP rs1046896 (cFDR = 6.84 × 10-49), CDKAL1 rs2206734 (cFDR = 6.48 × 10-10), B3GNTL1 rs58431774 (cFDR = 2.95 × 10-10), G6PC2 rs1402837 (cFDR = 1.82 × 10-8), and KCNQ1 rs60808706 (cFDR = 9.49 × 10-8) were highlighted for their significant genetic enrichment. The protein-protein interaction analysis revealed a significantly enriched network among novel discovered genes that were mostly found to be involved in the insulin and glucagon signaling pathways. Conclusions: Our study highlights potential pleiotropic effects across AAM and T2DM. This may shed light on identifying the genetic causes of T2DM.
Collapse
Affiliation(s)
- Yuan-Fang Cheng
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Yi Yang
- Department of Statistics, College of Management, National Cheng Kung University, Tainan 70101, Taiwan
| | - Meng-Che Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Shengli Road, Tainan 70403, Taiwan
- Department of Genomic Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Humanities and Social Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|