1
|
Li L, Huang F, Zhang YH, Cai YD. Identifying allergic-rhinitis-associated genes with random-walk-based method in PPI network. Comput Biol Med 2024; 175:108495. [PMID: 38697003 DOI: 10.1016/j.compbiomed.2024.108495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 05/04/2024]
Abstract
Allergic rhinitis is a common allergic disease with a complex pathogenesis and many unresolved issues. Studies have shown that the incidence of allergic rhinitis is closely related to genetic factors, and research on the related genes could help further understand its pathogenesis and develop new treatment methods. In this study, 446 allergic rhinitis-related genes were obtained on the basis of the DisGeNET database. The protein-protein interaction network was searched using the random-walk-with-restart algorithm with these 446 genes as seed nodes to assess the linkages between other genes and allergic rhinitis. Then, this result was further examined by three screening tests, including permutation, interaction, and enrichment tests, which aimed to pick up genes that have strong and special associations with allergic rhinitis. 52 novel genes were finally obtained. The functional enrichment test confirmed their relationships to the biological processes and pathways related to allergic rhinitis. Furthermore, some genes were extensively analyzed to uncover their special or latent associations to allergic rhinitis, including IRAK2 and MAPK, which are involved in the pathogenesis of allergic rhinitis and the inhibition of allergic inflammation via the p38-MAPK pathway, respectively. The new found genes may help the following investigations for understanding the underlying molecular mechanisms of allergic rhinitis and developing effective treatments.
Collapse
Affiliation(s)
- Lin Li
- Department of Otolaryngology and Head&neck, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China; Department of Otolaryngology and Head&neck, China-Japan Union Hospital, Jilin University, Changchun, 130033, China.
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Yu-Hang Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Zhang YH, Huang F, Li J, Shen W, Chen L, Feng K, Huang T, Cai YD. Identification of Protein-Protein Interaction Associated Functions Based on Gene Ontology. Protein J 2024; 43:477-486. [PMID: 38436837 DOI: 10.1007/s10930-024-10180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/05/2024]
Abstract
Protein-protein interactions (PPIs) involve the physical or functional contact between two or more proteins. Generally, proteins that can interact with each other always have special relationships. Some previous studies have reported that gene ontology (GO) terms are related to the determination of PPIs, suggesting the special patterns on the GO terms of proteins in PPIs. In this study, we explored the special GO term patterns on human PPIs, trying to uncover the underlying functional mechanism of PPIs. The experimental validated human PPIs were retrieved from STRING database, which were termed as positive samples. Additionally, we randomly paired proteins occurring in positive samples, yielding lots of negative samples. A simple calculation was conducted to count the number of positive samples for each GO term pair, where proteins in samples were annotated by GO terms in the pair individually. The similar number for negative samples was also counted and further adjusted due to the great gap between the numbers of positive and negative samples. The difference of the above two numbers and the relative ratio compared with the number on positive samples were calculated. This ratio provided a precise evaluation of the occurrence of GO term pairs for positive samples and negative samples, indicating the latent GO term patterns for PPIs. Our analysis unveiled several nuclear biological processes, including gene transcription, cell proliferation, and nutrient metabolism, as key biological functions. Interactions between major proliferative or metabolic GO terms consistently correspond with significantly reported PPIs in recent literature.
Collapse
Affiliation(s)
- Yu-Hang Zhang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - JiaBo Li
- School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, People's Republic of China
| | - WenFeng Shen
- School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, 201209, People's Republic of China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, 201306, People's Republic of China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, 510507, People's Republic of China
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
3
|
Pacini C, Duncan E, Gonçalves E, Gilbert J, Bhosle S, Horswell S, Karakoc E, Lightfoot H, Curry E, Muyas F, Bouaboula M, Pedamallu CS, Cortes-Ciriano I, Behan FM, Zalmas LP, Barthorpe A, Francies H, Rowley S, Pollard J, Beltrao P, Parts L, Iorio F, Garnett MJ. A comprehensive clinically informed map of dependencies in cancer cells and framework for target prioritization. Cancer Cell 2024; 42:301-316.e9. [PMID: 38215750 DOI: 10.1016/j.ccell.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/20/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
Genetic screens in cancer cell lines inform gene function and drug discovery. More comprehensive screen datasets with multi-omics data are needed to enhance opportunities to functionally map genetic vulnerabilities. Here, we construct a second-generation map of cancer dependencies by annotating 930 cancer cell lines with multi-omic data and analyze relationships between molecular markers and cancer dependencies derived from CRISPR-Cas9 screens. We identify dependency-associated gene expression markers beyond driver genes, and observe many gene addiction relationships driven by gain of function rather than synthetic lethal effects. By combining clinically informed dependency-marker associations with protein-protein interaction networks, we identify 370 anti-cancer priority targets for 27 cancer types, many of which have network-based evidence of a functional link with a marker in a cancer type. Mapping these targets to sequenced tumor cohorts identifies tractable targets in different cancer types. This target prioritization map enhances understanding of gene dependencies and identifies candidate anti-cancer targets for drug development.
Collapse
Affiliation(s)
- Clare Pacini
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emma Duncan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emanuel Gonçalves
- Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa, Portugal; INESC-ID, 1000-029 Lisboa, Portugal
| | - James Gilbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Shriram Bhosle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stuart Horswell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Emre Karakoc
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Howard Lightfoot
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ed Curry
- Genome Biology, Genomic Sciences, GSK, Stevenage, UK
| | - Francesc Muyas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | | | | | - Isidro Cortes-Ciriano
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Fiona M Behan
- Genome Biology, Genomic Sciences, GSK, Stevenage, UK
| | - Lykourgos-Panagiotis Zalmas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Barthorpe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Hayley Francies
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Genome Biology, Genomic Sciences, GSK, Stevenage, UK
| | - Steve Rowley
- Sanofi Research and Development, Cambridge, MA, USA
| | - Jack Pollard
- Sanofi Research and Development, Cambridge, MA, USA
| | - Pedro Beltrao
- Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leopold Parts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Francesco Iorio
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Human Technopole, V.le Rita Levi-Montalcini, 1, 20157 Milano, Italy.
| | - Mathew J Garnett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK; Open Targets, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| |
Collapse
|