1
|
Li T, Wang Y, Zhang Z, Ji C, Zheng N, Huang Y. A comparative analysis reveals the genomic diversity among 8 Muscovy duck populations. G3 (BETHESDA, MD.) 2024; 14:jkae112. [PMID: 38789099 PMCID: PMC11228869 DOI: 10.1093/g3journal/jkae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The Muscovy duck (Cairina moschata) is a waterfowl indigenous to the neotropical regions of Central and South America. It has low demand for concentrated feed and strong adaptability to different rearing conditions. After introduced to China through Eurasian commercial trade, Muscovy ducks have a domestication history of around 300 years in the Fujian Province of China. In the 1990s, the commodity Muscovy duck breed "Crimo," cultivated in Europe, entered the Chinese market for consumption and breeding purposes. Due to the different selective breeding processes, Muscovy ducks have various populational traits and lack transparency of their genetic background. To remove this burden in the Muscovy duck breeding process, we analyzed genomic data from 8 populations totaling 83 individuals. We identify 11.24 million single nucleotide polymorphisms (SNPs) and categorized these individuals into the Fujian-bred and the Crimo populations according to phylogenetic analyses. We then delved deeper into their evolutionary relationships through assessing population structure, calculating fixation index (FST) values, and measuring genetic distances. Our exploration of runs of homozygosity (ROHs) and homozygous-by-descent (HBD) uncovered genomic regions enriched for genes implicated in fatty acid metabolism, development, and immunity pathways. Selective sweep analyses further indicated strong selective pressures exerted on genes including TECR, STAT2, and TRAF5. These findings provide insights into genetic variations of Muscovy ducks, thus offering valuable information regarding genetic diversity, population conservation, and genome associated with the breeding of Muscovy ducks.
Collapse
Affiliation(s)
- Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Yiming Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Zhou Zhang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Congliang Ji
- Technology Department (Research Institute) Livestock and Poultry Breeding Research Office, Wens Foodstuff Group Co. Ltd, Huineng North Road, Xincheng Town, Xinxing County, Yunfu City, Guangdong Province 527400, China
| | - Nengzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| |
Collapse
|
2
|
Anderson-Trocmé L, Nelson D, Zabad S, Diaz-Papkovich A, Kryukov I, Baya N, Touvier M, Jeffery B, Dina C, Vézina H, Kelleher J, Gravel S. On the genes, genealogies, and geographies of Quebec. Science 2023; 380:849-855. [PMID: 37228217 DOI: 10.1126/science.add5300] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Population genetic models only provide coarse representations of real-world ancestry. We used a pedigree compiled from 4 million parish records and genotype data from 2276 French and 20,451 French Canadian individuals to finely model and trace French Canadian ancestry through space and time. The loss of ancestral French population structure and the appearance of spatial and regional structure highlights a wide range of population expansion models. Geographic features shaped migrations, and we find enrichments for migration, genetic, and genealogical relatedness patterns within river networks across regions of Quebec. Finally, we provide a freely accessible simulated whole-genome sequence dataset with spatiotemporal metadata for 1,426,749 individuals reflecting intricate French Canadian population structure. Such realistic population-scale simulations provide opportunities to investigate population genetics at an unprecedented resolution.
Collapse
Affiliation(s)
- Luke Anderson-Trocmé
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Dominic Nelson
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Shadi Zabad
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - Alex Diaz-Papkovich
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Ivan Kryukov
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| | - Nikolas Baya
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Mathilde Touvier
- Sorbonne Paris Nord University, INSERM U1153, INRAE U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center, University Paris Cité (CRESS), Bobigny, France
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Christian Dina
- Nantes Université, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Hélène Vézina
- BALSAC Project, Université du Québec á Chicoutimi, Chicoutimi, QC, Canada
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Simon Gravel
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, Montreal, QC, Canada
| |
Collapse
|